Temporal models for mining, ranking and recommendation in the Web

Download statistics - Document (COUNTER):

Nguyen, Tu: Temporal models for mining, ranking and recommendation in the Web. Hannover : Gottfried Wilhelm Leibniz Universität Hannover, Diss., 2020, xxii 142 S. DOI: https://doi.org/10.15488/9750

Selected time period:


Sum total of downloads: 35

Due to their first-hand, diverse and evolution-aware reflection of nearly all areas of life, heterogeneous temporal datasets i.e., the Web, collaborative knowledge bases and social networks have been emerged as gold-mines for content analytics of many sorts. In those collections, time plays an essential role in many crucial information retrieval and data mining tasks, such as from user intent understanding, document ranking to advanced recommendations. There are two semantically closedand important constituents when modeling along the time dimension, i.e., entity and event. Time is crucially served as the context for changes driven by happenings and phenomena (events) that related to people, organizations or places (so-called entities) in our social lives. Thus, determining what users expect, or in other words, resolving the uncertainty confounded by temporal changes is a compelling task to support consistent user satisfaction.In this thesis, we address the aforementioned issues and propose temporal models that capture the temporal dynamics of such entities and events to serve for the end tasks. Specifically, we make the following contributions in this thesis:(1) Query recommendation and document ranking in the Web - we address the issues for suggesting entity-centric queries and ranking effectiveness surrounding the happening time period of an associated event. In particular, we propose a multi-criteria optimization framework that facilitates the combination of multiple temporal models to smooth out the abrupt changes when transitioning between event phases for the former and a probabilistic approach for search result diversification of temporally ambiguous queries for the latter.(2) Entity relatedness in Wikipedia - we study the long-term dynamics of Wikipedia as a global memory place for high-impact events, specifically the reviving memories of past events. Additionally, we propose a neural network-based approach to measure the temporal relatedness of entities and events. The model engages different latent representations of an entity (i.e., from time, link-based graph and content) and use the collective attention from user navigation as the supervision.(3) Graph-based ranking and temporal anchor-text mining inWeb Archives - we tackle the problem of discovering important documents along the time-span ofWeb Archives, leveraging the link graph. Specifically, we combine the problems of relevance, temporal authority, diversity and time in a unified framework. The model accounts for the incomplete link structure and natural time lagging in Web Archives in mining the temporal authority.(4) Methods for enhancing predictive models at early-stage in social media and clinical domain - we investigate several methods to control model instability and enrich contexts of predictive models at the “cold-start” period. We demonstrate their effectiveness for the rumor detection and blood glucose prediction cases respectively.Overall, the findings presented in this thesis demonstrate the importance of tracking these temporal dynamics surround salient events and entities for IR applications. We show that determining such changes in time-based patterns and trends in prevalent temporal collections can better satisfy user expectations, and boost ranking and recommendation effectiveness over time.
License of this version: CC BY 3.0 DE
Document Type: doctoralThesis
Publishing status: publishedVersion
Issue Date: 2020
Appears in Collections:Dissertationen

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 19 54.29%
2 image of flag of United States United States 6 17.14%
3 image of flag of United Kingdom United Kingdom 2 5.71%
4 image of flag of France France 2 5.71%
5 image of flag of Italy Italy 1 2.86%
6 image of flag of Greece Greece 1 2.86%
7 image of flag of Spain Spain 1 2.86%
8 image of flag of Czech Republic Czech Republic 1 2.86%
9 image of flag of Switzerland Switzerland 1 2.86%
10 image of flag of Australia Australia 1 2.86%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository