Dirac structures on nilmanifolds and coexistence of fluxes

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Chatzistavrakidis, A.; Jonke, L.; Lechtenfeld, O.: Dirac structures on nilmanifolds and coexistence of fluxes. In: Nuclear Physics B 883 (2014), Nr. 1, S. 59-82. DOI: https://doi.org/10.1016/j.nuclphysb.2014.03.013

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/948

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 17




Kleine Vorschau
Zusammenfassung: 
We study some aspects of the generalized geometry of nilmanifolds and examine to which extent different types of fluxes can coexist on them. Nilmanifolds constitute a class of homogeneous spaces which are interesting in string compactifications with fluxes since they carry geometric flux by construction. They are generalized Calabi-Yau spaces and therefore simple examples of generalized geometry at work. We identify and classify Dirac structures on nilmanifolds, which are maximally isotropic subbundles closed under the Courant bracket. In the presence of non-vanishing fluxes, these structures are twisted and closed under appropriate extensions of the Courant bracket. Twisted Dirac structures on a nilmanifold may carry multiple coexistent fluxes of any type. We also show how dual Dirac structures combine to Courant algebroids and work out an explicit example where all types of generalized fluxes coexist. These results may be useful in the context of general flux compactifications in string theory.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2014
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 16 94,12%
2 image of flag of United States United States 1 5,88%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.