Evaluation of the Hybrid-Electric Aircraft Project Airbus E-Fan X

Download statistics - Document (COUNTER):

Benegas Jayme, Diego: Evaluation of the Hybrid-Electric Aircraft Project Airbus E-Fan X. Master Thesis. Hamburg : Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019. URN: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2019-06-30.012

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/9353

Selected time period:

year: 
month: 

Sum total of downloads: 0




Thumbnail
Abstract: 
Purpose - This master thesis evaluates the hybrid-electric aircraft project E-FAN X with respect to its economical and environmental performance in comparison to its reference aircraft, the BAe 146-100. The E-FAN X is replacing one of the four jet engines of the reference aircraft by an electric motor and a fan. A turboshaft engine in the cargo compartment drives a generator to power the electric motor. --- Methodology - The evaluation of this project is based on standard aircraft design equations. Economics are based on Direct Operating Costs (DOC), which are calculated with the method of the Association of European Airlines (AEA) from 1989, inflated to 2019 values. Environmental impact is assessed based on local air quality (NOx, Ozone and Particulate Matter), climate impact (CO2, NOx, Aircraft-Induced Cloudiness known as AIC) and noise pollution estimated with fundamental acoustic equations. --- Findings - The battery on board the E-FAN X it is not necessary. In order to improve the proposed design, the battery was eliminated. Nevertheless, due to additional parts required in the new configuration, the aircraft is 902 kg heavier. The turboshaft engine saves only 59 kg of fuel. The additional mass has to be compensated by a payload reduced by 9 passengers. The DOC per seat-mile are up by more than 10% and equivalent CO2 per seat-mile are more than 16% up in the new aircraft. --- Research limitations - Results are limited in accuracy by the underlying standard aircraft design calculations. The results are also limited in accuracy by the lack of knowledge of some data of the project. --- Practical implications - The report contributes arguments to the discussion about electric flight. --- Social implications - Results show that unconditional praise given to the environmental characteristics of this industry project are not justified.
License of this version: CC BY-NC-SA 4.0 Unported
Document Type: book
Publishing status: publishedVersion
Issue Date: 2019
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse