Quantum simulation of Abelian gauge fields with ultracold gases

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Cardarelli, Lorenzo: Quantum simulation of Abelian gauge fields with ultracold gases. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2019, viii, 137 S. DOI: https://doi.org/10.15488/9225

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 392




Kleine Vorschau
Zusammenfassung: 
Gauge theories are ubiquitous in physics.Many intriguing phenomena in condensed matter physics owe to the action of the electromagnetic field, which is an Abelian gauge theory.The numerical treatment of many-body systems is inherently complex due to the exponentially growing size of the Hilbert space.While in one dimension an area law guarantees that numerical methods on classical computers can deal with strongly correlated systems, in higher dimensions the quantum simulation comes as the panacea for the many-body problem.The present thesis comprises the elaboration of experimentally feasible methods for the quantum simulation of dynamical Abelian gauge fields with ultra-cold gases of neutral atoms and the theoretical analysis of the related model Hamiltonians.As neutral atoms do not interact with external vector potentials like charged particles would do, the gauge fields have to be artificially engineered.The elements of a gauge theory that need to be replicated on a quantum simulator vary depending on the subject of investigation.The key ingredient at the root of many condensed matter phenomena, from the quantum Hall effect to superconductivity and chiral topological insulators, is the Berry phase.Whilst artificial static gauge fields have been widely explored, much remains to do regarding the realization of artificial dynamical gauge fields.In Chapter 3 we present a method based on the amplitude modulation of a one-dimensional optical lattice, which allows for an unprecedented degree of control over a wide range of parameters.The method also comprises the generation of a density-dependent complex phase, fundamental to the creation of anyonic pseudo-particles.The anyons are amenable of observation through interferometric measurement, realizable with the same experimental set-up.With regard to gauge theories, the Berry phase is just the visible tip of the iceberg.Below the waterline, there is more to consider in order to comprehensively reproduce a gauge theory, like the electric and magnetic fields in quantum electrodynamics.Moreover, a full account for the inherent symmetry is crucial to investigate phenomena proper of non-Abelian gauge theories in the context of high-energy physics, such as confinement.For this collection of topics, one can turn to lattice gauge theories.In Chapter 5, we consider a class of lattice gauge theories particularly suitable for quantum simulation, the Quantum Link Model.The study of the Abelian U(1) Quantum Link Model on a ladder geometry reveals a highly non-trivial phase diagram, featuring a symmetry-protected topological phase.In both Chapters, innovative solutions for the experimental realization of the model Hamiltonians are designed and proposed.To gain numerical access to the ground-state properties and the dynamics of the systems investigated we make use of state-of-the-art numerical methods based on Tensor Networks.The elements of the numerical analysis carried out throughout this thesis are presented in Chapter 6.In the last part we offer an outlook on research perspectives related to the topics discussed in the thesis.
Lizenzbestimmungen: CC BY-NC-ND 3.0 DE
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2019
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik
Dissertationen

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 212 54,08%
2 image of flag of United States United States 39 9,95%
3 image of flag of China China 33 8,42%
4 image of flag of Italy Italy 14 3,57%
5 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 14 3,57%
6 image of flag of No geo information available No geo information available 9 2,30%
7 image of flag of Spain Spain 8 2,04%
8 image of flag of Russian Federation Russian Federation 6 1,53%
9 image of flag of Czech Republic Czech Republic 6 1,53%
10 image of flag of Hong Kong Hong Kong 4 1,02%
    andere 47 11,99%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.