Learning cartographic building generalization with deep convolutional neural networks

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Feng, Y.; Thiemann, F.; Sester, M.: Learning cartographic building generalization with deep convolutional neural networks. In: ISPRS International Journal of Geo-Information 8 (2019), Nr. 6, 258. DOI: https://doi.org/10.3390/ijgi8060258

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/8808

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 411




Kleine Vorschau
Zusammenfassung: 
Cartographic generalization is a problem, which poses interesting challenges to automation. Whereas plenty of algorithms have been developed for the different sub-problems of generalization (e.g., simplification, displacement, aggregation), there are still cases, which are not generalized adequately or in a satisfactory way. The main problem is the interplay between different operators. In those cases the human operator is the benchmark, who is able to design an aesthetic and correct representation of the physical reality. Deep learning methods have shown tremendous success for interpretation problems for which algorithmic methods have deficits. A prominent example is the classification and interpretation of images, where deep learning approaches outperform traditional computer vision methods. In both domains-computer vision and cartography-humans are able to produce good solutions. A prerequisite for the application of deep learning is the availability of many representative training examples for the situation to be learned. As this is given in cartography (there are many existing map series), the idea in this paper is to employ deep convolutional neural networks (DCNNs) for cartographic generalizations tasks, especially for the task of building generalization. Three network architectures, namely U-net, residual U-net and generative adversarial network (GAN), are evaluated both quantitatively and qualitatively in this paper. They are compared based on their performance on this task at target map scales 1:10,000, 1:15,000 and 1:25,000, respectively. The results indicate that deep learning models can successfully learn cartographic generalization operations in one single model in an implicit way. The residual U-net outperforms the others and achieved the best generalization performance.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2019
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 197 47,93%
2 image of flag of United States United States 46 11,19%
3 image of flag of France France 14 3,41%
4 image of flag of China China 12 2,92%
5 image of flag of Russian Federation Russian Federation 8 1,95%
6 image of flag of Poland Poland 7 1,70%
7 image of flag of Philippines Philippines 7 1,70%
8 image of flag of United Kingdom United Kingdom 7 1,70%
9 image of flag of Belarus Belarus 7 1,70%
10 image of flag of Hong Kong Hong Kong 6 1,46%
    andere 100 24,33%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.