Chen, L.; Rottensteiner, F.; Heipke, C.: Feature descriptor by convolution and pooling autoencoders. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 40 (2015), Nr. 3W2, S. 31-38. DOI: https://doi.org/10.5194/isprsarchives-XL-3-W2-31-2015
Abstract: | |
In this paper we present several descriptors for feature-based matching based on autoencoders, and we evaluate the performance of these descriptors. In a training phase, we learn autoencoders from image patches extracted in local windows surrounding key points determined by the Difference of Gaussian extractor. In the matching phase, we construct key point descriptors based on the learned autoencoders, and we use these descriptors as the basis for local keypoint descriptor matching. Three types of descriptors based on autoencoders are presented. To evaluate the performance of these descriptors, recall and 1-precision curves are generated for different kinds of transformations, e.g. zoom and rotation, viewpoint change, using a standard benchmark data set. We compare the performance of these descriptors with the one achieved for SIFT. Early results presented in this paper show that, whereas SIFT in general performs better than the new descriptors, the descriptors based on autoencoders show some potential for feature based matching. | |
License of this version: | CC BY 3.0 Unported |
Document Type: | Article |
Publishing status: | publishedVersion |
Issue Date: | 2015 |
Appears in Collections: | Fakultät für Bauingenieurwesen und Geodäsie |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
Germany | 128 | 42.81% |
2 | ![]() |
United States | 33 | 11.04% |
3 | ![]() |
China | 23 | 7.69% |
4 | ![]() |
Belgium | 22 | 7.36% |
5 | ![]() |
Brazil | 9 | 3.01% |
6 | ![]() |
Slovakia | 7 | 2.34% |
7 | ![]() |
Japan | 7 | 2.34% |
8 | ![]() |
India | 7 | 2.34% |
9 | ![]() |
No geo information available | 6 | 2.01% |
10 | ![]() |
Russian Federation | 6 | 2.01% |
other countries | 51 | 17.06% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.