Orientation of oblique airborne image sets - Experiences from the ISPRS/Eurosdr benchmark on multi-platform photogrammetry

Download statistics - Document (COUNTER):

Gerke, M.; Nex, F.; Remondino, F.; Jacobsen, K.; Kremer, J. et al.: Orientation of oblique airborne image sets - Experiences from the ISPRS/Eurosdr benchmark on multi-platform photogrammetry. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 41 (2016), S. 185-191. DOI: http://dx.doi.org/10.5194/isprsarchives-XLI-B1-185-2016

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/702

Selected time period:


Sum total of downloads: 221

During the last decade the use of airborne multi camera systems increased significantly. The development in digital camera technology allows mounting several mid- or small-format cameras efficiently onto one platform and thus enables image capture under different angles. Those oblique images turn out to be interesting for a number of applications since lateral parts of elevated objects, like buildings or trees, are visible. However, occlusion or illumination differences might challenge image processing. From an image orientation point of view those multi-camera systems bring the advantage of a better ray intersection geometry compared to nadir-only image blocks. On the other hand, varying scale, occlusion and atmospheric influences which are difficult to model impose problems to the image matching and bundle adjustment tasks. In order to understand current limitations of image orientation approaches and the influence of different parameters such as image overlap or GCP distribution, a commonly available dataset was released. The originally captured data comprises of a state-of-the-art image block with very high overlap, but in the first stage of the so-called ISPRS/EUROSDR benchmark on multi-platform photogrammetry only a reduced set of images was released. In this paper some first results obtained with this dataset are presented. They refer to different aspects like tie point matching across the viewing directions, influence of the oblique images onto the bundle adjustment, the role of image overlap and GCP distribution. As far as the tie point matching is concerned we observed that matching of overlapping images pointing to the same cardinal direction, or between nadir and oblique views in general is quite successful. Due to the quite different perspective between images of different viewing directions the standard tie point matching, for instance based on interest points does not work well. How to address occlusion and ambiguities due to different views onto objects is clearly a non-solved research problem so far. In our experiments we also confirm that the obtainable height accuracy is better when all images are used in bundle block adjustment. This was also shown in other research before and is confirmed here. Not surprisingly, the large overlap of 80/80% provides much better object space accuracy – random errors seem to be about 2-3fold smaller compared to the 60/60% overlap. A comparison of different software approaches shows that newly emerged commercial packages, initially intended to work with small frame image blocks, do perform very well.
License of this version: CC BY 3.0
Document Type: article
Publishing status: publishedVersion
Issue Date: 2016
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 75 33.94%
2 image of flag of China China 26 11.76%
3 image of flag of United States United States 22 9.95%
4 image of flag of Poland Poland 13 5.88%
5 image of flag of Italy Italy 10 4.52%
6 image of flag of United Kingdom United Kingdom 8 3.62%
7 image of flag of Canada Canada 8 3.62%
8 image of flag of Russian Federation Russian Federation 6 2.71%
9 image of flag of Hong Kong Hong Kong 6 2.71%
10 image of flag of Greece Greece 6 2.71%
    other countries 41 18.55%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository