Vehicle localization by lidar point correlation improved by change detection

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Schlichting, A.; Brenner, C.: Vehicle localization by lidar point correlation improved by change detection. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 41 (2016), S. 703-710. DOI: http://dx.doi.org/10.5194/isprsarchives-XLI-B1-703-2016

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/691

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 453




Kleine Vorschau
Zusammenfassung: 
LiDAR sensors are proven sensors for accurate vehicle localization. Instead of detecting and matching features in the LiDAR data, we want to use the entire information provided by the scanners. As dynamic objects, like cars, pedestrians or even construction sites could lead to wrong localization results, we use a change detection algorithm to detect these objects in the reference data. If an object occurs in a certain number of measurements at the same position, we mark it and every containing point as static. In the next step, we merge the data of the single measurement epochs to one reference dataset, whereby we only use static points. Further, we also use a classification algorithm to detect trees. For the online localization of the vehicle, we use simulated data of a vertical aligned automotive LiDAR sensor. As we only want to use static objects in this case as well, we use a random forest classifier to detect dynamic scan points online. Since the automotive data is derived from the LiDAR Mobile Mapping System, we are able to use the labelled objects from the reference data generation step to create the training data and further to detect dynamic objects online. The localization then can be done by a point to image correlation method using only static objects. We achieved a localization standard deviation of about 5 cm (position) and 0.06° (heading), and were able to successfully localize the vehicle in about 93 % of the cases along a trajectory of 13 km in Hannover, Germany.
Lizenzbestimmungen: CC BY 3.0 Unported
Publikationstyp: article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2016
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 224 49,45%
2 image of flag of China China 53 11,70%
3 image of flag of United States United States 30 6,62%
4 image of flag of Japan Japan 18 3,97%
5 image of flag of United Kingdom United Kingdom 16 3,53%
6 image of flag of Korea, Republic of Korea, Republic of 15 3,31%
7 image of flag of Taiwan Taiwan 9 1,99%
8 image of flag of Europe Europe 9 1,99%
9 image of flag of Bangladesh Bangladesh 6 1,32%
10 image of flag of Australia Australia 5 1,10%
    andere 68 15,01%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Suche im Repositorium


Durchblättern