A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Park, S.-B.; Baik, J.-J.; Raasch, S.; Letzel, M.O.: A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. In: Journal of Applied Meteorology and Climatology 51 (2012), Nr. 3, S. 829-841. DOI: https://doi.org/10.1175/JAMC-D-11-0180.1

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/5504

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 165




Kleine Vorschau
Zusammenfassung: 
Thermal effects on turbulent flow and dispersion in and above an idealized street canyon with a street aspect ratio of 1 are numerically investigated using the parallelized large-eddy simulation model (“PALM”). Each of upwind building wall, street bottom, and downwind building wall is heated, and passive scalars are emitted from the street bottom. When compared with the neutral (no heating) case, the heating of the upwind building wall or street bottom strengthens a primary vortex in the street canyon and the heating of the downwind building wall induces a shrunken primary vortex and a winding flow between the vortex and the downwind building wall. Heating also induces higher turbulent kinetic energy and stronger turbulent fluxes at the rooftop height. In the neutral case, turbulent eddies generated by shear instability dominate mixing at the rooftop height and appear as band-shaped perturbations in the time–space plots of turbulent momentum and scalar fluxes. In all of the heating cases, buoyancy-generated turbulent eddies as well as shear-generated turbulent eddies contribute to turbulent momentum and scalar fluxes and band-shaped or lump-shaped perturbations appear at the rooftop height. A quadrant analysis shows that at the rooftop height, in the neutral case and in the case with upwind building-wall heating, sweep events are less frequent but contribute more to turbulent momentum flux than do ejection events. By contrast, in the case with street-bottom and downwind building-wall heating, the frequency of sweep events is similar to that of ejection events and the contribution of ejection events to turbulent momentum flux is comparable to that of sweep events. Copyright 2012 American Meteorological Society
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2012
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 88 53,33%
2 image of flag of United States United States 32 19,39%
3 image of flag of China China 15 9,09%
4 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 3 1,82%
5 image of flag of Greece Greece 3 1,82%
6 image of flag of Australia Australia 3 1,82%
7 image of flag of Cyprus Cyprus 2 1,21%
8 image of flag of Switzerland Switzerland 2 1,21%
9 image of flag of Canada Canada 2 1,21%
10 image of flag of Brazil Brazil 1 0,61%
    andere 14 8,48%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.