The route to raindrop formation in a shallow cumulus cloud simulated by a Lagrangian cloud model

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Hoffmann, F.; Noh, Y.; Raasch, S.: The route to raindrop formation in a shallow cumulus cloud simulated by a Lagrangian cloud model. In: Journal of the Atmospheric Sciences 74 (2017), Nr. 7, S. 2125-2142. DOI: https://doi.org/10.1175/JAS-D-16-0220.1

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/5500

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 72




Kleine Vorschau
Zusammenfassung: 
The mechanism of raindrop formation in a shallow cumulus cloud is investigated using a Lagrangian cloud model (LCM). The analysis is focused on how and under which conditions a cloud droplet grows to a raindrop by tracking the history of individual Lagrangian droplets. It is found that the rapid collisional growth, leading to raindrop formation, is triggered when single droplets with a radius of 20 μm appear in the region near the cloud top, characterized by large liquid water content, strong turbulence, large mean droplet size, broad drop size distribution (DSD), and high supersaturations. Raindrop formation easily occurs when turbulence-induced collision enhancement (TICE) is considered, with or without any extra broadening of the DSD by another mechanism (such as entrainment and mixing). In contrast, when TICE is not considered, raindrop formation is severely delayed if no other broadening mechanism is active. The reason for the difference is clarified by the additional analysis of idealized box simulations of the collisional growth process for different DSDs in varied turbulent environments. It is found that TICE does not accelerate the timing of the raindrop formation for individual droplets, but it enhances the collisional growth rate significantly afterward by providing a greater number of large droplets for collision. Higher droplet concentrations increase the time for raindrop formation and decrease precipitation but intensify the effect of TICE. Copyright 2017 American Meteorological Society
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2017
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of United States United States 21 29,17%
2 image of flag of Germany Germany 21 29,17%
3 image of flag of Korea, Republic of Korea, Republic of 9 12,50%
4 image of flag of China China 8 11,11%
5 image of flag of Canada Canada 2 2,78%
6 image of flag of Ukraine Ukraine 1 1,39%
7 image of flag of Taiwan Taiwan 1 1,39%
8 image of flag of Sweden Sweden 1 1,39%
9 image of flag of Russian Federation Russian Federation 1 1,39%
10 image of flag of Brazil Brazil 1 1,39%
    andere 6 8,33%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.