Context models for crf-based classification of multitemporal remote sensing data

Download statistics - Document (COUNTER):

Hoberg, Thorsten; Rottensteiner, Franz; Heipke, Christian: Context models for crf-based classification of multitemporal remote sensing data. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences I-7 (2012), Nr. 1, S. 129-134. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 48

The increasing availability of multitemporal satellite remote sensing data offers new potential for land cover analysis. By combining data acquired at different epochs it is possible both to improve the classification accuracy and to analyse land cover changes at a high frequency. A simultaneous classification of images from different epochs that is also capable of detecting changes is achieved by a new classification technique based on Conditional Random Fields (CRF). CRF provide a probabilistic classification framework including local spatial and temporal context. Although context is known to improve image analysis results, so far only little research was carried out on how to model it. Taking into account context is the main benefit of CRF in comparison to many other classification methods. Context can be already considered by the choice of features and in the design of the interaction potentials that model the dependencies of interacting sites in the CRF. In this paper, these aspects are more thoroughly investigated. The impact of the applied features on the classification result as well as different models for the spatial interaction potentials are evaluated and compared to the purely label-based Markov Random Field model.
License of this version: CC BY 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2012
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 18 37.50%
2 image of flag of United States United States 9 18.75%
3 image of flag of China China 7 14.58%
4 image of flag of Vietnam Vietnam 3 6.25%
5 image of flag of Nepal Nepal 2 4.17%
6 image of flag of Taiwan Taiwan 1 2.08%
7 image of flag of Poland Poland 1 2.08%
8 image of flag of Netherlands Netherlands 1 2.08%
9 image of flag of Korea, Republic of Korea, Republic of 1 2.08%
10 image of flag of Canada Canada 1 2.08%
    other countries 4 8.33%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository