TableNet: An approach for determining fine-grained relations for wikipedia tables

Download statistics - Document (COUNTER):

Fetahu, B.; Anand, A.; Koutraki, M.: TableNet: An approach for determining fine-grained relations for wikipedia tables. In: The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, S. 2736-2742. DOI: https://doi.org/10.1145/3308558.3313629

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/5072

Selected time period:

year: 
month: 

Sum total of downloads: 129




Thumbnail
Abstract: 
We focus on the problem of interlinking Wikipedia tables with fine-grained table relations: equivalent and subPartOf. Such relations allow us to harness semantically related information by accessing related tables or facts therein. Determining the type of a relation is not trivial. Relations are dependent on the schemas, the cell-values, and the semantic overlap of the cell values in tables. We propose TableNet, an approach for interlinking tables with subPartOf and equivalent relations. TableNet consists of two main steps: (i) for any source table we provide an efficient algorithm to find candidate related tables with high coverage, and (ii) a neural based approach that based on the table schemas and data, determines with high accuracy the fine-grained relation. Based on an extensive evaluation with more than 3.2M tables, we show that TableNet retains more than 88% of relevant tables pairs, and assigns table relations with an accuracy of 90%.
License of this version: CC BY 4.0 Unported
Document Type: BookPart
Publishing status: publishedVersion
Issue Date: 2019
Appears in Collections:Forschungszentren

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 56 43.41%
2 image of flag of United States United States 17 13.18%
3 image of flag of No geo information available No geo information available 10 7.75%
4 image of flag of India India 8 6.20%
5 image of flag of China China 6 4.65%
6 image of flag of Taiwan Taiwan 5 3.88%
7 image of flag of United Kingdom United Kingdom 3 2.33%
8 image of flag of Netherlands Netherlands 2 1.55%
9 image of flag of Japan Japan 2 1.55%
10 image of flag of Ireland Ireland 2 1.55%
    other countries 18 13.95%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse