Land Use Classification Using Conditional Random Fields for the Verification of Geospatial Databases

Download statistics - Document (COUNTER):

Albert, Lena; Rottensteiner, Franz; Heipke, Christian: Land Use Classification Using Conditional Random Fields for the Verification of Geospatial Databases. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-4 (2014), S. 1-7. DOI: https://doi.org/10.5194/isprsannals-ii-4-1-2014

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/5013

Selected time period:

year: 
month: 

Sum total of downloads: 17




Thumbnail
Abstract: 
Geospatial land use databases contain important information with high benefit for several users, especially when they provide a detailed description on parcel level. Due to many changes connected with a high effort of the update process, these large-scale land use maps become outdated quickly. This paper presents a two-step approach for the automatic verification of land use objects of a geospatial database using high-resolution aerial images. In the first step, a precise pixel-based land cover classification using spectral, textural and three-dimensional features is applied. In the second step, an object-based land use classification follows, which is based on features derived from the pixel-based land cover classification as well as geometrical, spectral and textural features. For both steps, the potential of the incorporation of contextual knowledge in the classification process is explored. For this purpose, we use Conditional Random Fields (CRF), which have proven to be a flexible, powerful framework for contextual classification in various applications in remote sensing. The results of the approach are evaluated on an urban test site and the influence of different features and models on the classification accuracy is analysed. It is shown that the use of CRF for the land cover classification yields an improved accuracy and smoother results compared to independent pixel-based approaches. The integration of contextual knowledge also has a remarkable positive effect on the results of the land use classification.
License of this version: CC BY 3.0
Document Type: article
Publishing status: publishedVersion
Issue Date: 2014
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 14 82.35%
2 image of flag of Korea, Republic of Korea, Republic of 2 11.76%
3 image of flag of India India 1 5.88%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse