Agricultural uses reshape soil C, N, and P stoichiometry in subtropical ecosystems

Download statistics - Document (COUNTER):

Liu, H. Y.; Zhou, J. G.; Shen, Jianlin; Li, Yan; Li, Yuyuan et al.: Agricultural uses reshape soil C, N, and P stoichiometry in subtropical ecosystems. In: Biogeosciences Discussions (2016). DOI: https://doi.org/10.5194/bg-2016-211

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/4975

Selected time period:

year: 
month: 

Sum total of downloads: 112




Thumbnail
Abstract: 
Changes in elemental stoichiometry, in most cases, attributed to land use alterations may cause vital impacts on the nutrient status and environmental quality of ecosystems. Here, we studied the stoichiometry and spatial distribution patterns of soil organic carbon (SOC), total soil nitrogen (TN), and total soil phosphorus (TP) in topsoil (0–20 cm; 1207 samples) ecosystems in a representative catchment of subtropical hilly region of China. Its main land uses are woodland, paddy fields, and tea farmlands. Data obtained show that the medians of SOC, TN, and TP were 16.97, 1.83, and 0.52 g kg−1, and medians of C : N, C : P, and N : P molar ratios were 10.0, 78.6 and 7.9, respectively. The best-fitting model were exponential models for SOC, TN, TP, C : N, and N : P, while for C : P was Gaussian model. The nugget values for SOC, TN, TP, C : N, C : P, and N : P were 1.0, 0.06, 0.01, 6.0, 56.0, and 1.0, respectively. And their ranges were 750, 1290, 570, 2970, 810, and 720, respectively. The nugget-to-sill ratio (NSR) for SOC, TN, TP, C : P, and N : P were 2.7 %, 14.3 %, 20.0 %, 4.0 %, and 10.0 %, respectively, and showed strong spatial autocorrelation. While C:N molar ratios had a moderate spatial correlation, with NSR of 49.95 %. Spatial analyses showed that agriculture derived land use changes alter largely the spatial distribution and stoichiometry of C, N, and P elements in individual landscapes and entire catchment. For woodland ecosystems, topography factors (elevation and slope) determined the elemental spatial distributions and stoichiometry (C : N, C : P, and N : P molar ratios). However, this status had been merged in agricultural ecosystems, due to the relative similarity in cropping and managing (N and P inputs through fertilization). Agriculture significantly increases N, and P contents but narrows C : N, C : P, and N : P molar ratios. Thus, our findings demonstrate that agricultural activities can affect carbon and nutrient stoichiometry at the catchment scale.
License of this version: CC BY 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2016
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 34 30.36%
2 image of flag of United States United States 33 29.46%
3 image of flag of China China 20 17.86%
4 image of flag of United Kingdom United Kingdom 6 5.36%
5 image of flag of Singapore Singapore 2 1.79%
6 image of flag of Russian Federation Russian Federation 2 1.79%
7 image of flag of Pakistan Pakistan 2 1.79%
8 image of flag of Philippines Philippines 2 1.79%
9 image of flag of Netherlands Netherlands 2 1.79%
10 image of flag of Vietnam Vietnam 1 0.89%
    other countries 8 7.14%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse