Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

Download statistics - Document (COUNTER):

Helms, Gabriele; Behrens, Bernd-Arno; Stolorz, Martin; Wefstaedt, Patrick; Nolte, Ingo: Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces . In: Biomedical Engineering Online 8 (2009) , 36. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 283

Background: Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS-) model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods: The anatomical geometries of the MBS-model have been established using computer tomography- (CT-) and magnetic resonance imaging- (MRI-) data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s) on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion: As a result the vertical ground reaction forces (z-direction) calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion: In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in silico development and testing of hip prostheses.
License of this version: CC BY 2.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2009-11-23
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 226 79.86%
2 image of flag of United States United States 18 6.36%
3 image of flag of China China 9 3.18%
4 image of flag of Vietnam Vietnam 7 2.47%
5 image of flag of Russian Federation Russian Federation 2 0.71%
6 image of flag of Netherlands Netherlands 2 0.71%
7 image of flag of Croatia Croatia 2 0.71%
8 image of flag of Switzerland Switzerland 2 0.71%
9 image of flag of Ecuador Ecuador 1 0.35%
10 image of flag of Czech Republic Czech Republic 1 0.35%
    other countries 13 4.59%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository