Crisosto, C.; Hofmann, M.; Mubarak, R.; Seckmeyer, G.: One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks. In: Energies 11 (2018), Nr. 11, 2906. DOI: https://doi.org/10.3390/en11112906
Abstract: | |
We present a method to predict the global horizontal irradiance (GHI) one hour ahead in one-minute resolution using Artificial Neural Networks (ANNs). A feed-forward neural network with Levenberg–Marquardt Backpropagation (LM-BP) was used and was trained with four years of data from all-sky images and measured global irradiance as input. The pictures were recorded by a hemispheric sky imager at the Institute of Meteorology and Climatology (IMuK) of the Leibniz Universität Hannover, Hannover, Germany (52.23° N, 09.42° E, and 50 m above sea level). The time series of the global horizontal irradiance was measured using a thermopile pyranometer at the same site. The new method was validated with a test dataset from the same source. The irradiance is predicted for the first 10–30 min very well; after this time, the length of which is dependent on the weather conditions, the agreement between predicted and observed irradiance is reasonable. Considering the limited range that the camera and the ANN can “see”, this is not surprising. When comparing the results to the persistence model, we observed that the forecast accuracy of the new model reduced both the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) of the one-hour prediction by approximately 40% compared to the reference persistence model under various weather conditions, which demonstrates the high capability of the algorithm, especially within the first minutes. | |
License of this version: | CC BY 4.0 Unported |
Document Type: | Article |
Publishing status: | publishedVersion |
Issue Date: | 2018 |
Appears in Collections: | Fakultät für Mathematik und Physik |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
Germany | 92 | 51.11% |
2 | ![]() |
United States | 41 | 22.78% |
3 | ![]() |
China | 8 | 4.44% |
4 | ![]() |
Ukraine | 5 | 2.78% |
5 | ![]() |
France | 5 | 2.78% |
6 | ![]() |
Sudan | 3 | 1.67% |
7 | ![]() |
Russian Federation | 3 | 1.67% |
8 | ![]() |
No geo information available | 2 | 1.11% |
9 | ![]() |
Pakistan | 2 | 1.11% |
10 | ![]() |
Japan | 2 | 1.11% |
other countries | 17 | 9.44% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.