Computational Machine Learning Representation for the Flexoelectricity Effect in Truncated Pyramid Structures

Download statistics - Document (COUNTER):

Hamdia, K.M.; Ghasemi, H.; Zhuang, X.; Alajlan, N.; Rabczuk, T.: Computational Machine Learning Representation for the Flexoelectricity Effect in Truncated Pyramid Structures. In: Computers, Materials & Continua 59 (2019), Nr. 1, S. 79-87. DOI: https://10.32604/cmc.2019.05882.

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 106

In this study, machine learning representation is introduced to evaluate the flexoelectricity effect in truncated pyramid nanostructure under compression. A Non-Uniform Rational B-spline (NURBS) based IGA formulation is employed to model the flexoelectricity. We investigate 2D system with an isotropic linear elastic material under plane strain conditions discretized by 45×30 grid of B-spline elements. Six input parameters are selected to construct a deep neural network (DNN) model. They are the Young's modulus, two dielectric permittivity constants, the longitudinal and transversal flexoelectric coefficients and the order of the shape function. The outputs of interest are the strain in the stress direction and the electric potential due flexoelectricity. The dataset are generated from the forward analysis of the flexoelectric model. 80% of the dataset is used for training purpose while the remaining is used for validation by checking the mean squared error. In addition to the input and output layers, the developed DNN model is composed of four hidden layers. The results showed high predictions capabilities of the proposed method with much lower computational time in comparison to the numerical model.
License of this version: CC BY 4.0
Document Type: article
Publishing status: publishedVersion
Issue Date: 2019
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 63 59.43%
2 image of flag of United States United States 11 10.38%
3 image of flag of China China 8 7.55%
4 image of flag of India India 7 6.60%
5 image of flag of Spain Spain 4 3.77%
6 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 3 2.83%
7 image of flag of United Kingdom United Kingdom 3 2.83%
8 image of flag of Vietnam Vietnam 1 0.94%
9 image of flag of Iraq Iraq 1 0.94%
10 image of flag of Canada Canada 1 0.94%
    other countries 4 3.77%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository