Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 3D-Bioprinting Purposes

Download statistics - Document (COUNTER):

Raddatz, L. et al.: Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 3D-Bioprinting Purposes. In: Journal of Functional Biomaterials 9 (2018), Nr. 4, 63. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 91

Three-dimensional (3D)-bioprinting enables scientists to mimic in vivo micro-environments and to perform in vitro cell experiments under more physiological conditions than is possible with conventional two-dimensional (2D) cell culture. Cell-laden biomaterials (bioinks) are precisely processed to bioengineer tissue three-dimensionally. One primarily used matrix material is sodium alginate. This natural biopolymer provides both fine mechanical properties when gelated and highbiocompatibility. Commonly, alginate is 3D bioprinted using extrusion based devices. The gelation reaction is hereby induced by a CaCl2 solution in the building chamber after material extrusion. This established technique has two main disadvantages: (1) CaCl2 can have toxic effects on the cell-laden hydrogels by oxygen diffusion limitation and (2) good printing resolution in the CaCl2 solution is hard to achieve, since the solution needs to be removed afterwards and substituted by cell culture media. Here, we show an innovative approach of alginate bioprinting based on aCaCl2 nebulizer. The device provides CaCl2 mist to the building platform inducing the gelation. The necessary amount of CaCl2 could be decreased as compared to previous gelation strategies and limitation of oxygen transfer during bioprinting can be reduced. The device was manufactured using the MJP-3D printing technique. Subsequently, its digital blueprint (CAD file) can be modified and additive manufactured easily and mounted in various extrusion bioprinters. With our approach, a concept for a more gentle 3D Bioprinting method could be shown. We demonstrated that the concept of an ultrasound-based nebulizer for CaCl2 mist generation can be used for 3D bioprinting and that the mist-induced polymerization of alginate hydrogels of different concentrations is feasible.Furthermore, different cell-laden alginate concentrations could be used: Cell spheroids (mesenchymal stem cells) and single cells (mouse fibroblasts) were successfully 3D printed yielding viable cells and stable hydrogels after 24 h cultivation. We suggest our work to show a different and novel approachon alginate bioprinting, which could be useful in generating cell-laden hydrogel constructs for e.g., drug screening or (soft) tissue engineering applications.
License of this version: CC BY 4.0 Unported
Document Type: article
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 68 74.73%
2 image of flag of United States United States 9 9.89%
3 image of flag of Nigeria Nigeria 2 2.20%
4 image of flag of Indonesia Indonesia 2 2.20%
5 image of flag of United Kingdom United Kingdom 2 2.20%
6 image of flag of No geo information available No geo information available 1 1.10%
7 image of flag of Taiwan Taiwan 1 1.10%
8 image of flag of Sweden Sweden 1 1.10%
9 image of flag of Italy Italy 1 1.10%
10 image of flag of Spain Spain 1 1.10%
    other countries 3 3.30%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository