A new approach for an integrated kinematic-dynamic orbit determination of low flying satellites based on GNSS observations

Download statistics - Document (COUNTER):

Shabanloui, A.: A new approach for an integrated kinematic-dynamic orbit determination of low flying satellites based on GNSS observations. Geodätische Woche 2007, 25.-27. September 2007, Leipzig. https://www.geodaetische-woche.de/

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/4692

Selected time period:


Sum total of downloads: 31

Very precise kinematic or dynamic orbits based on measurements of the Global Navigation Satellite Systems (GNSS) are required to study sea level change and ice cover variations based on the observations of altimetry satellites, atmospheric sounding by GNSS occultation measurements or the detection of mass transports and the mass distribution in the Earth system by a precise determination of the stationary and time variable gravity field. The continuous and precise observation of the orbits of low flying satellites such as CHAMP and GRACE by the GNSS enabled the development of new gravity field determination techniques. The classical approach of satellite geodesy was based on the analysis of accumulated orbit perturbations of artificial satellites with different altitudes and orbit inclinations. This so-called differential orbit improvement technique required the analysis of rather long arcs of days to weeks; it was the adequate technique for satellite arcs poorly covered with observations, mainly precise laser ranging to satellites. Now a very dense coverage with observations of the low flying satellites is available independent from Earth based observation stations and there is no need to use very long arcs with its intrinsic problems. The new alternative gravity field recovery concepts developed in the last couple of years require precise kinematical or reduced dynamical orbits derived from the code and phase measurements. In this paper a new approach for an integrated kinematic-dynamic orbit determination of low flying satellites based on GNSS observations is presented. The short arcs of the low flying satellites are represented by a linear approximation function where the model parameters are also functions of the force function acting on the satellites. This allows the determination of orbits with different kinematic and dynamic orbit characteristics.
License of this version: CC BY 3.0 DE
Document Type: conferenceObject
Publishing status: publishedVersion
Issue Date: 2007-09-26
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 29 93.55%
2 image of flag of Poland Poland 1 3.23%
3 image of flag of China China 1 3.23%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository