Modelling and simulation of the transport mechanisms in solid oxide fuel cells with molecular dynamics and non-equilibrium thermodynamics

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Valadez Huerta, Gerardo: Modelling and simulation of the transport mechanisms in solid oxide fuel cells with molecular dynamics and non-equilibrium thermodynamics. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2018, circa 161 S. DOI: https://doi.org/10.15488/4442

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 2.315




Kleine Vorschau
Zusammenfassung: 
The quantitative description of the transport mechanisms in solid oxide fuel cells (SOFCs) is relevant for cell development and the optimization of operating strategies. These mechanisms have an intrinsic multi-causality as given by Non-Equilibrium Thermodynamics (NET), which is not necessarily considered by empirical classical transport equations. If, e.g., additional heat is transported due to a potential gradient across the SOFC, this effect may have to be considered for the design of heating or cooling strategies. The main focus of this thesis is the description of the transport mechanisms in the electrolyte of a SOFC. The electrolyte is an essential part of the cell and should be highly ionic conductive, gas-tight and an electronic insulator. The electrolyte materials analyzed are zirconium dioxide ZrO2 co-doped with yttrium(III) oxide Y2O3 (YSZ) and ZrO2 co-doped with 10 mol% scandium(III) oxide Sc2O3 and 1 mol% cerium dioxide CeO2 (10Sc1CeSZ). This work comprises three molecular dynamics (MD) studies, which provide data for the phenomenological coefficients based on NET for different YSZ compositions, as well as the ionic conductivity and different diffusion coefficients for 10Sc1CeSZ. The numerical data for the ionic conductivity of 10Sc1CeSZ agrees with experimental studies. Furthermore, the dependency of each transport mechanism on the Y2O3 concentration in YSZ is explained by linear response theory. A theoretical framework is proposed to give the electrostatic potential thermodynamic consistency and to relate it to the Coulomb contribution of other thermodynamic quantities. Finally, simulations of a planar SOFC with an YSZ electrolyte are carried out using a validated one-dimensional(1D) NET model and the phenomenological coefficients from the MD simulations. If the coupled mechanisms are neglected, the temperature profile, the heat flux and the entropy production may not be correctly predicted. The methodologies and results from this work can be used in future studies to describe more accurately the transport mechanisms in SOFCs with electrolytes based on ZrO2 metal oxides or even other electrolyte technologies like proton conducting perovskites. Moreover, they can also be used to effectively predict the thermal behavior of SOFCs and, thus, they provide a contribution to the optimization of thermal strategies in SOFCs.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2019
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau
Dissertationen

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 1.351 58,36%
2 image of flag of United States United States 259 11,19%
3 image of flag of Japan Japan 124 5,36%
4 image of flag of China China 90 3,89%
5 image of flag of Russian Federation Russian Federation 67 2,89%
6 image of flag of Czech Republic Czech Republic 63 2,72%
7 image of flag of India India 34 1,47%
8 image of flag of Spain Spain 26 1,12%
9 image of flag of France France 24 1,04%
10 image of flag of United Kingdom United Kingdom 22 0,95%
    andere 255 11,02%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.