An analytical model for the optimum drift voltage of drift tube ion mobility spectrometers with respect to resolving power and detection limits

Download statistics - Document (COUNTER):

Kirk, A.T.; Zimmermann, S.: An analytical model for the optimum drift voltage of drift tube ion mobility spectrometers with respect to resolving power and detection limits. In: International Journal for Ion Mobility Spectrometry 18 (2015), Nr. 3-4, S. 129-135. DOI: https://doi.org/10.1007/s12127-015-0176-x

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/4406

Selected time period:

year: 
month: 

Sum total of downloads: 208




Thumbnail
Abstract: 
One of the key experimental parameters of measurements using a drift tube ion mobility spectrometer is the drift voltage applied across its length, as it governs a multitude of processes during the ion drift. While the effect of the drift voltage on the resolving power has already been well-described, only little attention has been paid so far to developing an equally sophisticated model for the effect on the limits of detection. In this work, we extend our previous model for the resolving power and signal-to-noise-ratio of a drift tube ion mobility spectrometer operated at the resolving power optimal drift voltage to arbitrary drift voltages. It is shown that the deviation from this operating point can be completely described for any drift tube by using only the dimensionless factor β, which is defined as the ratio between the applied drift voltage and the resolving power optimal drift voltage. From these general equations, it can be shown that the signal-to-noise-ratio and therefore the limits of detection vary much more significantly with changing drift voltage than the resolving power. Thus, it is possible to apply a higher than resolving power optimal drift voltage to lower the limits of detection with only a slight loss of resolving power. E.g., a 47.5 % higher drift voltage is able to halve the limits of detection, but yields only 8 % resolving power loss. The final publication is available at Springer via https://doi.org/10.1007/s12127-015-0176-x.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: Article
Publishing status: acceptedVersion
Issue Date: 2015
Appears in Collections:Fakultät für Elektrotechnik und Informatik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 106 50.96%
2 image of flag of China China 34 16.35%
3 image of flag of United States United States 20 9.62%
4 image of flag of Korea, Republic of Korea, Republic of 8 3.85%
5 image of flag of United Kingdom United Kingdom 7 3.37%
6 image of flag of No geo information available No geo information available 6 2.88%
7 image of flag of Netherlands Netherlands 4 1.92%
8 image of flag of Latvia Latvia 3 1.44%
9 image of flag of Japan Japan 3 1.44%
10 image of flag of France France 2 0.96%
    other countries 15 7.21%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse