Die Genauigkeit einer vereinfachten Berechnung der Steigzeit von Flugzeugen

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Mutschall, Marcel: Die Genauigkeit einer vereinfachten Berechnung der Steigzeit von Flugzeugen. Hamburg : Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2018, 43 S.

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/4307

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 37




Kleine Vorschau
Zusammenfassung: 
Ziel – Die Zeit die ein Flugzeug benötigt, um auf eine bestimmte Höhe zu steigen (die Steigzeit) kann mit einer Formel berechnet werden, die vereinfachend annimmt, dass die Steiggeschwindigkeit über dem gesamten Steigflug mit zunehmender Höhe linear abnimmt. Ziel der Untersuchung ist, zu ermitteln, ob die Annahme einer linear abnehmenden Steiggeschwindigkeit realistisch ist bzw. welche Fehler sich aus der Annahme ergeben. ----- Methode – Mit der Höhe ändern sich Parameter wie Luftdichte, Widerstand, Schub und damit auch die optimale Fluggeschwindigkeit für den Steigflug. Die Parameter beeinflussen sich dabei gegenseitig. Der Schub wird dabei nach drei unterschiedlichen Methoden berechnet, gegeben von Bräunling, Scholz und Howe. Analysiert wird der Verlauf des Schubes mit der Höhe und der Verlauf der Steiggeschwindigkeit mit der Höhe für jede der drei Schubberechnungen. Abschließend wird für jede Schubberechnung die Steigzeit verglichen wie sie sich ergibt a) aus der einfachen Formel und b) aus einer Integrationsberechnung, bei der der Verlauf der Steiggeschwindigkeit durch eine Funktion beschrieben wird. ----- Ergebnisse – Die drei Schubberechnungen liefern ausgehend vom gleichen Startschub unterschiedliche Schübe in der Höhe. In die Methode nach Bräunling gehen mehr Parameter ein als in die anderen beiden Methoden. Es kann angenommen werden, dass die Methode nach Bräunling genauer ist, der Beweis kann aber nicht geführt werden. Der Schub nach Scholz und Howe fällt nahezu linear mit der Höhe ab. Der Schubverlauf nach Bräunling zeigt eine deutliche Nichtlinearität. Es wird die Steigzeit von 0 km auf 11 km Höhe berechnet nach a) und b), mit jeder der drei Schubberechnungen. Dabei wird jeweils der Unterschied in der Steigzeit ermittelt. Aufgrund der Nichtlinearität im Schubverlauf zeigt die Methode nach Bräunling dann auch den größten Unterschied zwischen den Berechnungsmethoden von 7,1 %. Bei einer Schubberechnung nach Scholz ergeben sich 1,7 % und nach Howe 1,4 %. Wenn bereits zu Beginn Vereinfachungen, z.B. bezüglich des Triebwerksschubes, vorgenommen wurden, ist es in Hinblick auf den Aufwand und die zu erreicheneden Ergebnisse möglich, und zum Teil sinnvoll, die Berechnungen der Steigzeit mittels linearer Abnahme der vertikalen Geschwindigkeit durchzuführen. Es wird ausdrücklich darauf hingewiesen, dass es hier um den Vergleich von zwei Methoden zur Berechnung der Steigzeit geht und nicht um die Bewertung von Methoden zur Schubberechnung (für die keine Vergleichswerte vorlagen). ----- Praktischer Nutzen – Es konnte festgestellt werden, dass eine einfache Formel zur Berechnung der Steigzeit mit geringem Fehler angewandt werden kann – insbesondere wenn Methoden zur Schubberechnung vorliegen, bei denen der Schub annähernd linear mit der Höhe abnimmt. Bei großem Aufwand und realitätsnaher Betrachtung, z.B. nach Bräunling, führt der lineare Ansatz jedoch zu einem zu großen Fehler. Hierfür sollte die Berechnung der Steigzeit mittels Integration durchgeführt werden.
Lizenzbestimmungen: CC BY-NC-SA 4.0
Publikationstyp: book
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2018
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 29 78,38%
2 image of flag of United States United States 3 8,11%
3 image of flag of Turkey Turkey 1 2,70%
4 image of flag of Italy Italy 1 2,70%
5 image of flag of Europe Europe 1 2,70%
6 image of flag of Spain Spain 1 2,70%
7 image of flag of Austria Austria 1 2,70%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Suche im Repositorium


Durchblättern