Forming and oxidation behavior during forging with consideration of carbon content of steel

Download statistics - Document (COUNTER):

Graf, M.; Ullmann, M.; Korpala, G.; Wester, H.; Awiszus, B. et al.: Forming and oxidation behavior during forging with consideration of carbon content of steel. In: Metals 8 (2018), Nr. 12, 996. DOI: https://doi.org/10.3390/met8120996

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/4295

Selected time period:

year: 
month: 

Sum total of downloads: 154




Thumbnail
Abstract: 
Developments in technology rely increasingly on the numerical simulation of single process steps up to whole process chains using commercially available or user-written software systems, mostly based on the finite element method (FEM). However, detailed simulations require realistic models. These models consider the relevant material-specific parameters and coefficients for the basic material, surface phenomena, and dies, as well as machine kinematics. This knowledge exists to some extent for certain materials, but not in general for groups of steel that depend on alloying elements. Nevertheless, the basic material and its behavior before, during, and after hot deformation must be understood when designing and describing die-forging processes by experimental and numerical simulations. This is why a new mathematical approach has been formulated for forming behavior and recrystallization kinetics, taking into account the carbon content of the base material, the initial microstructure, and the reheating mode. Furthermore, there have been no studies investigating the influence of varying a single chemical element, such as the carbon content, with regard to the oxidation behavior, including the internal structure (e.g., pores) at high temperatures. In this context the majority of studies were performed with steel grade C45 (material no. 1.0503), which was chosen as base material for the experiments conducted. To identify the effects of the alloying element carbon on the material and oxidation behavior, steel grades C15 (material no. 1.0401) and C60 (material no. 1.0601) were also investigated. The investigations revealed a dependence of the material behavior (microstructure and surface) on the alloying system. Based on the experimental results, the mathematical models formulated were parameterized and implemented in the FE-software Simufact Forming (Simufact Engineering GmbH, Hamburg, Germany) by means of user subroutines. Furthermore, a correlation between the thickness of the oxide scale layer and friction was determined in ring compression tests and accounted for in the software code. Finally, real forging tests were carried out under laboratory conditions, with all three investigated steels for calibration of the materials as well as the FE models.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 85 55.19%
2 image of flag of United States United States 25 16.23%
3 image of flag of China China 12 7.79%
4 image of flag of France France 9 5.84%
5 image of flag of No geo information available No geo information available 7 4.55%
6 image of flag of Nigeria Nigeria 5 3.25%
7 image of flag of Vietnam Vietnam 2 1.30%
8 image of flag of India India 2 1.30%
9 image of flag of Turkey Turkey 1 0.65%
10 image of flag of Serbia Serbia 1 0.65%
    other countries 5 3.25%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse