Improved classification of satellite imagery using spatial feature maps extracted from social media

Download statistics - Document (COUNTER):

Leichter, A.; Wittich, D.; Rottensteiner, F.; Werner, M.; Sester, M.: Improved classification of satellite imagery using spatial feature maps extracted from social media. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42 (2018), Nr. 4, S. 403-410. DOI: https://doi.org/10.5194/isprs-archives-XLII-4-335-2018

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/4071

Selected time period:

year: 
month: 

Sum total of downloads: 73




Thumbnail
Abstract: 
In this work, we consider the exploitation of social media data in the context of Remote Sensing and Spatial Information Sciences. To this end, we explore a way of augmenting and integrating information represented by geo-located feature vectors into a system for the classification of satellite images. For that purpose, we present a quite general data fusion framework based on Convolutional Neural Network (CNN) and an initial examination of our approach on features from geo-located social media postings on the Twitter and Sentinel images. For this examination, we selected six simple Twitter features derived from the metadata, which we believe could contain information for the spatial context. We present initial experiments using geotagged Twitter data from Washington DC and Sentinel images showing this area. The goal of classification is to determine local climate zones (LCZ). First, we test whether our selected feature maps are not correlated with the LCZ classification at the geo-tag position. We apply a simple boost tree classifier on this data. The result turns out not to be a mere random classifier. Therefore, this data can be correlated with LCZ. To show the improvement by our method, we compare classification with and without the Twitter feature maps. In our experiments, we apply a standard pixel-based CNN classification of the Sentinel data and use it as a baseline model. After that, we expand the input augmenting additional Twitter feature maps within the CNN and assess the contribution of these additional features to the overall F1-score of the classification, which we determine from spatial cross-validation.
License of this version: CC BY 4.0
Document Type: article
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 50 68.49%
2 image of flag of Pakistan Pakistan 4 5.48%
3 image of flag of United States United States 3 4.11%
4 image of flag of India India 3 4.11%
5 image of flag of China China 3 4.11%
6 image of flag of Italy Italy 2 2.74%
7 image of flag of Iraq Iraq 2 2.74%
8 image of flag of Korea, Republic of Korea, Republic of 1 1.37%
9 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 1 1.37%
10 image of flag of Brazil Brazil 1 1.37%
    other countries 3 4.11%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse