Bayesian statistics for the calibration of the LISA Pathfinder experiment

Download statistics - Document (COUNTER):

Armano, M.; Audley, H.; Auger, G.; Binetruy, P.; Born, M. et al.: Bayesian statistics for the calibration of the LISA Pathfinder experiment. In: Journal of Physics: Conference Series 610 (2015), Nr. 1, 12027. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 42

The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.
License of this version: CC BY 3.0 Unported
Document Type: article
Publishing status: publishedVersion
Issue Date: 2015
Appears in Collections:An-Institute

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 27 64.29%
2 image of flag of United States United States 6 14.29%
3 image of flag of China China 4 9.52%
4 image of flag of Vietnam Vietnam 1 2.38%
5 image of flag of No geo information available No geo information available 1 2.38%
6 image of flag of India India 1 2.38%
7 image of flag of France France 1 2.38%
8 image of flag of Denmark Denmark 1 2.38%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository