Model-based control of flying robots for robust interaction under wind influence

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Tomić, Teodor: Model-based control of flying robots for robust interaction under wind influence. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2018, ii, 144 S. DOI: https://doi.org/10.15488/3987

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 1.713




Kleine Vorschau
Zusammenfassung: 
The main goal of this thesis is to bridge the gap between trajectory tracking and interaction control for flying robots in order to allow physical interaction under wind influence by making aerial robots aware of the disturbance, interaction, and faults acting on them. This is accomplished by reasoning about the external wrench (force and torque) acting on the robot, and discriminating (distinguishing) between wind, interactions, and collisions. This poses the following research questions. First, is discrimination between the external wrench components even possible in a continuous real-time fashion for control purposes? Second, given the individual wrench components, what are effective control schemes for interaction and trajectory tracking control under wind influence? Third, how can unexpected faults, such as collisions with the environment, be detected and handled efficiently and effectively? In the interest of the first question, a fourth can be posed: is it possible to obtain a measurement of the wind speed that is independent of the external wrench? In this thesis, model-based methods are applied in the pursuit of answers to these questions. This requires a good dynamics model of the robot, as well as accurately identified parameters. Therefore, a systematic parameter identification procedure for aerial robots is developed and applied. Furthermore, external wrench estimation techniques from the field of robot manipulators are extended to be suitable for aerial robots without the need of velocity measurements, which are difficult to obtain in this context. Based on the external wrench estimate, interaction control techniques (impedance and admittance control) are extended and applied to flying robots, and a thorough stability proof is provided. Similarly, the wrench estimate is applied in a geometric trajectory tracking controller to compensate external disturbances, to provide zero steady-state error under wind influence without the need of integral control action. The controllers are finally combined into a novel compensated impedance controller, to facilitate the main goal of the thesis. Collision detection is applied to flying robots, providing a low level reflex reaction that increases safety of these autonomous robots. In order to identify aerodynamic models for wind speed estimation, flight experiments in a three-dimensional wind tunnel were performed using a custom-built hexacopter. This data is used to investigate wind speed estimation using different data-driven aerodynamic models. It is shown that good performance can be obtained using relatively simple linear regression models. In this context, the propeller aerodynamic power model is used to obtain information about wind speed from available motor power measurements. Leveraging the wind tunnel data, it is shown that power can be used to obtain the wind speed. Furthermore, a novel optimization-based method that leverages the propeller aerodynamics model is developed to estimate the wind speed. Essentially, these two methods use the propellers as wind speed sensors, thereby providing an additional measurement independent of the external force. Finally, the novel topic of simultaneously discriminating between aerodynamic, interaction, and fault wrenches is opened up. This enables the implementation of novel types of controllers that are e.g. compliant to physical interaction, while compensating wind disturbances at the same time. The previously unexplored force discrimination topic has the potential to even open a new research avenue for flying robots.
Lizenzbestimmungen: CC BY 3.0 DE
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2018
Die Publikation erscheint in Sammlung(en):Fakultät für Elektrotechnik und Informatik
Dissertationen

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 750 43,78%
2 image of flag of United States United States 218 12,73%
3 image of flag of China China 90 5,25%
4 image of flag of India India 83 4,85%
5 image of flag of France France 53 3,09%
6 image of flag of Russian Federation Russian Federation 51 2,98%
7 image of flag of Netherlands Netherlands 42 2,45%
8 image of flag of United Kingdom United Kingdom 32 1,87%
9 image of flag of Czech Republic Czech Republic 26 1,52%
10 image of flag of Italy Italy 23 1,34%
    andere 345 20,14%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.