Two-mode entanglement in spin and spatial degrees of freedom

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Lange, Karsten: Two-mode entanglement in spin and spatial degrees of freedom. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2018. 23 S. DOI: https://doi.org/10.15488/3664

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 669




Kleine Vorschau
Zusammenfassung: 
The predictions of quantum mechanics often differ from our everyday experiences. In the classical case, the state of a system can be predicted precisely, assuming the exact knowledge of all parameters. This is not possible in quantum mechanics. For example, the spin of one particle can be simultaneously in two different states, until a measurement defines the actual state. If multiple particles are in such superposition states, their spins can be coupled with each other such that the measurement of one particle changes the physical state of the other particles. This coupling effect is a fundamental part of quantum mechanics and is called entanglement. It is a central requirement for applications in the fields of quantum communication, quantum cryptography and quantum computing. One possibility to create entanglement are spin-changing collisions in a spinor Bose-Einstein condensate. These collisions are described by a nonlinear process, which creates non-classical correlations between all atoms of the Bose-Einstein condensate. Within this thesis, 87Rb spinor Bose-Einstein condensates are used to demonstrate Einstein-Podolsky-Rosen entanglement by the generation and analysis of a two-mode entangled state in spin space [A1]. These states are applied in an interferometric measurement with a resolution of 2.05+0.34 -0.37 dB beyond the standard quantum limit [A2]. Depending on the dynamics, the process can also be analogous to the dynamical Casimir effect [A3]. The entanglement between the particles in these publications is strongly connected with their indistinguishability. It is thus possible to make the particles distinguishable again and recover the entanglement between the now separated particles? This question is approached by cutting an entangled state of indistinguishable particles into two spatially separated atomic modes - creating a two-mode entangled state in real space. As shown in Ref. [A4], the entanglement between the two separated clouds of a Bose-Einstein condensate can be measured directly. In the future, the created state can be employed for a test of quantum nonlocality.
Lizenzbestimmungen: CC BY 3.0 DE
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2018
Die Publikation erscheint in Sammlung(en):Dissertationen
QUEST-Leibniz-Forschungsschule

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 398 59,49%
2 image of flag of United States United States 81 12,11%
3 image of flag of China China 41 6,13%
4 image of flag of India India 23 3,44%
5 image of flag of United Kingdom United Kingdom 13 1,94%
6 image of flag of France France 10 1,49%
7 image of flag of Switzerland Switzerland 7 1,05%
8 image of flag of Russian Federation Russian Federation 6 0,90%
9 image of flag of Korea, Republic of Korea, Republic of 6 0,90%
10 image of flag of No geo information available No geo information available 5 0,75%
    andere 79 11,81%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.