Impact of merging methods on radar based nowcasting of rainfall

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Shehu, B.; Haberlandt, U.: Impact of merging methods on radar based nowcasting of rainfall. In: Geophysical Research Abstracts 19 (2017), EGU2017-9027

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/3655

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 16




Kleine Vorschau
Zusammenfassung: 
Radar data with high spatial and temporal resolution are commonly used to track and predict rainfall patterns that serve as input for hydrological applications. To mitigate the high errors associated with the radar, many merging methods employing ground measurements have been developed. However these methods have been investigated mainly for simulation purposes, while for nowcasting they are limited to the application of the mean field bias correction. Therefore this study aims to investigate the impact of different merging methods on the nowcasting of the rainfall volumes regarding urban floods. Radar bias correction based on mean fields and quantile mapping are analyzed individually and also are implemented in conditional merging. Special attention is given to the impact of spatial and temporal filters on the predictive skill of all methods. The relevance of the radar merging techniques is demonstrated by comparing the performance of the forecasted rainfall field from the radar tracking algorithm HyRaTrac for both raw and merged radar data. For this purpose several extreme events are selected and the respective performance is evaluated by cross validation of the continuous criteria (bias and rmse) and categorical criteria (POD, FAR and GSS) for lead times up to 2 hours. The study area is located within the 128 km radius of Hannover radar in Lower Saxony, Germany and the data set constitutes of 80 recording stations in 5 min time steps for the period 2000-2012. The results reveal how the choice of merging method and the implementation of filters impacts the performance of the forecast algorithm.
Lizenzbestimmungen: CC BY 3.0
Publikationstyp: conferenceObject
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2017
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 15 93,75%
2 image of flag of Poland Poland 1 6,25%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Suche im Repositorium


Durchblättern