A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Muschinski, A.: A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES. In: Journal of Fluid Mechanics 325 (1996), S. 239-260. DOI: https://doi.org/10.1017/S0022112096008105

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/3615

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 254




Kleine Vorschau
Zusammenfassung: 
A Kolmogorov-type similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type large-eddy simulation (LES) at very large LES Reynolds numbers is developed and discussed. The underlying concept is that the LES equations may be considered equations of motion of specific hypothetical fully turbulent non-Newtonian fluids, called 'LES fluids'. It is shown that the length scale lS = cSΔ, which scales the magnitude of the variable viscosity in a Smagorinsky-type LES, is the 'Smagorinsky-fluid' counterpart of Kolmogorov's dissipation length η = ν3/4ε-1/4 for a Newtonian fluid where ν is the kinematic viscosity and ε is the energy dissipation rate. While in a Newtonian fluid the viscosity is a material parameter and the length η depends on ε, in a Smagorinsky fluid the length ls is a material parameter and the viscosity depends on ε. The Smagorinsky coefficient cS may be considered the reciprocal of a 'microstructure Knudsen number' of a Smagorinsky fluid. A combination of Lilly's (1967) cut-off model with two well-known spectral models for dissipation-range turbulence (Heisenberg 1948; Pao 1965) leads to models for the LES-generated Kolmogorov coefficient αLES as a function of cS. Both models predict an intrinsic overestimation of αLES for finite values of cS. For cS = 0.2 Heisenberg's and Pao's models provide αLES = 1.74 (16% overestimation) and αLES = 2.14 (43% overestimation), respectively, if limcS→∞(αLES) = 1.5 is ad hoc assumed. The predicted overestimation becomes negligible beyond about cS = 0.5. The requirement cS > 0.5 is equivalent to Δ < 2lS. A similar requirement, L < 2η where L is the wire length of hot-wire anemometers, has been recommended by experimentalists. The value of limcS→∞(αLES) for a Smagorinsky-type LES at very large LES Reynolds numbers is not predicted by the models and remains unknown. Two critical values of cS are identified. The first critical cS is Lilly's (1967) value, which indicates the cS below which finite-difference-approximation errors become important; the second critical cS is the value beyond which the Reynolds number similarity is violated.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 1996
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 97 38,19%
2 image of flag of United States United States 45 17,72%
3 image of flag of China China 18 7,09%
4 image of flag of Russian Federation Russian Federation 11 4,33%
5 image of flag of Taiwan Taiwan 7 2,76%
6 image of flag of France France 6 2,36%
7 image of flag of No geo information available No geo information available 5 1,97%
8 image of flag of Netherlands Netherlands 4 1,57%
9 image of flag of Japan Japan 4 1,57%
10 image of flag of Switzerland Switzerland 4 1,57%
    andere 53 20,87%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.