Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density

Download statistics - Document (COUNTER):

Berndt, C.; Haberlandt, U.: Spatial interpolation of climate variables in Northern Germany - Influence of temporal resolution and network density. In: Journal of Hydrology: Regional Studies 15 (2018), S. 184-202. DOI: https://doi.org/10.1016/j.ejrh.2018.02.002

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/3383

Selected time period:

year: 
month: 

Sum total of downloads: 105




Thumbnail
Abstract: 
Study region: Region in Lower Saxony (North Germany) covered by the measuring range of the weather radar device located near Hanover (approx. 50.000 m2). Study focus: This study investigates the performance of various spatial interpolation techniques for climate variables. Meteorological observations are usually recorded as site-specific point information by weather stations and estimation accuracy for unobserved locations depends generally on station density, temporal resolution, spatial variation of the variable and choice of interpolation method. This work aims to evaluate the influence of these factors on interpolation performance of different climate variables. A cross validation analysis was performed for precipitation, temperature, humidity, cloud coverage, sunshine duration, and wind speed observations. Hourly to yearly temporal resolutions and different additional information were considered. New hydrological insights: Geostatistical techniques provide a better performance for all climate variables compared to simple methods Radar data improves the estimation of rainfall with hourly temporal resolution, while topography is useful for weekly to yearly values and temperature in general. No helpful information was found for cloudiness, sunshine duration, and wind speed, while interpolation of humidity benefitted from additional temperature data. The influences of temporal resolution, spatial variability, and additional information appear to be stronger than station density effects. High spatial variability of hourly precipitation causes the highest error, followed by wind speed, cloud coverage and sunshine duration. Lowest errors occur for temperature and humidity.
License of this version: CC BY-NC-ND 4.0 Unported
Document Type: article
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 85 80.95%
2 image of flag of Europe Europe 3 2.86%
3 image of flag of Russian Federation Russian Federation 2 1.90%
4 image of flag of Hungary Hungary 2 1.90%
5 image of flag of France France 2 1.90%
6 image of flag of Spain Spain 2 1.90%
7 image of flag of United States United States 1 0.95%
8 image of flag of Thailand Thailand 1 0.95%
9 image of flag of Italy Italy 1 0.95%
10 image of flag of Belgium Belgium 1 0.95%
    other countries 5 4.76%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse