Photocatalytic degradation of the herbicide imazapyr: Do the initial degradation rates correlate with the adsorption kinetics and isotherms?

Download statistics - Document (COUNTER):

Atitar, M.F.; Bouziani, A.; Dillert, R.; El Azzouzi, M.; Bahnemann, D.W.: Photocatalytic degradation of the herbicide imazapyr: Do the initial degradation rates correlate with the adsorption kinetics and isotherms?. In: Catalysis Science and Technology 8 (2018), Nr. 4, S. 985-995. DOI: https://doi.org/10.1039/c7cy01903c

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/3375

Selected time period:

year: 
month: 

Sum total of downloads: 170




Thumbnail
Abstract: 
The objective of this work is to correlate the photocatalytic degradation of the herbicide imazapyr in aqueous suspensions of the commercially available Evonik Aeroxide TiO2 P25 with the dark adsorption phenomena considering both the equilibrium state and the kinetics of adsorption. The results of this study show that the adsorption of imazapyr onto the TiO2 surface is a second-order reaction and satisfies the criteria required by the Langmuir model. The adsorbed amount of imazapyr is found to be high at pH 3 and to decrease with increasing pH. The kinetics of the photocatalytic degradation of imazapyr were analysed taking into account the effect of the pH as well as of the catalyst mass concentration. However, special attention was focussed on the influence of the reactant concentration on the reaction rate. The Langmuir-Hinshelwood model fitting revealed that the apparent adsorption constant obtained under irradiation is significantly larger than the adsorption constant obtained in the dark. The initial reaction rates of the photocatalytic imazapyr degradation were larger than the initial adsorption rates of the probe molecule on the TiO2 surface. It is therefore concluded that the photocatalytic imazapyr degradation does not follow necessarily a Langmuir-Hinshelwood mechanism despite the fact that a rate law having the mathematical form of the Langmuir-Hinshelwood rate law was successfully used to describe the observed dependence of the initial reaction rates on the initial concentrations. A Langmuir-Hinshelwood mechanism for the photocatalytic imazapyr degradation is compatible only with the additional assumption that the rate constant of adsorption increases by irradiation with UV light. © 2018 The Royal Society of Chemistry.
License of this version: CC BY-NC 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 96 56.47%
2 image of flag of China China 28 16.47%
3 image of flag of United States United States 25 14.71%
4 image of flag of India India 2 1.18%
5 image of flag of Hungary Hungary 1 0.59%
6 image of flag of Croatia Croatia 1 0.59%
7 image of flag of United Kingdom United Kingdom 1 0.59%
8 image of flag of Europe Europe 1 0.59%
9 image of flag of Spain Spain 1 0.59%
10 image of flag of Azerbaijan Azerbaijan 1 0.59%
    other countries 13 7.65%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse