Evaluation of Alternative Paths for Reliable Routing in City Logistics

Download statistics - Document (COUNTER):

Groß, P.-O.; Ehmke, J.F.; Haas, I.; Mattfeld, D.C.: Evaluation of Alternative Paths for Reliable Routing in City Logistics. In: Transportation Research Procedia 27 (2017), S. 1195-1202. DOI: https://doi.org/10.1016/j.trpro.2017.12.067

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/3334

Selected time period:

year: 
month: 

Sum total of downloads: 177




Thumbnail
Abstract: 
Due to varying traffic volumes and limited traffic infrastructure in urban areas, travel times are uncertain and differ during the day. In this environment, city logistics service providers (CLSP) have to fulfill deliveries in a cost-efficient and reliable manner. To ensure cost-efficient routing while satisfying promised delivery dates, information on the expected travel times between customers needs to be considered appropriately. Typically, vehicle routing is based on information from shortest paths between customers, to determine the cost-minimal sequence of customer visits. This information is usually precomputed using shortest path algorithms. Most approaches merely consider a single (shortest) path, based on a single cost value (e.g., distance or average travel time). To incorporate information on travel time variation, it might be of value to consider alternative paths and more sophisticated travel time models such as Interval Travel Times (ITT). In this work, we investigate the incorporation of alternative paths into city logistics vehicle routing. For this purpose, we compare our approach to classical shortest path approaches within a vehicle routing problem. Our approach considers a set of alternative paths and incorporates ITT. Experiments are conducted within an exemplary city logistics setting. Computational results show that the consideration of alternative paths allows to select better paths with regard to a trade-off between efficiency and reliability when travel times are varying. © 2017 The Authors. Published by Elsevier B.V.
License of this version: CC BY-NC-ND 4.0 Unported
Document Type: article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Fakultät für Elektrotechnik und Informatik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of China China 88 49.72%
2 image of flag of Germany Germany 69 38.98%
3 image of flag of United States United States 5 2.82%
4 image of flag of Libya Libya 3 1.69%
5 image of flag of Spain Spain 2 1.13%
6 image of flag of Netherlands Netherlands 1 0.56%
7 image of flag of Korea, Republic of Korea, Republic of 1 0.56%
8 image of flag of Italy Italy 1 0.56%
9 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 1 0.56%
10 image of flag of India India 1 0.56%
    other countries 5 2.82%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse