Security event recognition for visual surveillance

Download statistics - Document (COUNTER):

Liao, W.; Yang, C.; Ying, Yang, M.; Rosenhahn, B.: Security event recognition for visual surveillance. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4 (2017), Nr. 1W1, S. 19-26. DOI: https://doi.org/10.5194/isprs-annals-IV-1-W1-19-2017

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/3196

Selected time period:

year: 
month: 

Sum total of downloads: 214




Thumbnail
Abstract: 
With rapidly increasing deployment of surveillance cameras, the reliable methods for automatically analyzing the surveillance video and recognizing special events are demanded by different practical applications. This paper proposes a novel effective framework for security event analysis in surveillance videos. First, convolutional neural network (CNN) framework is used to detect objects of interest in the given videos. Second, the owners of the objects are recognized and monitored in real-time as well. If anyone moves any object, this person will be verified whether he/she is its owner. If not, this event will be further analyzed and distinguished between two different scenes: moving the object away or stealing it. To validate the proposed approach, a new video dataset consisting of various scenarios is constructed for more complex tasks. For comparison purpose, the experiments are also carried out on the benchmark databases related to the task on abandoned luggage detection. The experimental results show that the proposed approach outperforms the state-of-the-art methods and effective in recognizing complex security events. © 2017 Copernicus GmbH. All rights reserved.
License of this version: CC BY 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 64 29.91%
2 image of flag of United States United States 29 13.55%
3 image of flag of Peru Peru 27 12.62%
4 image of flag of China China 13 6.07%
5 image of flag of Europe Europe 12 5.61%
6 image of flag of Korea, Republic of Korea, Republic of 11 5.14%
7 image of flag of Netherlands Netherlands 6 2.80%
8 image of flag of India India 6 2.80%
9 image of flag of Italy Italy 5 2.34%
10 image of flag of United Kingdom United Kingdom 4 1.87%
    other countries 37 17.29%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse