Probabilistic balance monitoring for bipedal robots

Download statistics - Document (COUNTER):

Höhn, O.; Gerth, W.: Probabilistic balance monitoring for bipedal robots. In: International Journal of Robotics Research 28 (2009), Nr. 2, S. 245-256. DOI: https://doi.org/10.1177/0278364908095170

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/3041

Selected time period:

year: 
month: 

Sum total of downloads: 84




Thumbnail
Abstract: 
In this paper, a probability-based balance monitoring concept for humanoid robots is proposed. Two algorithms are presented that allow us to distinguish between exceptional situations and normal operations. The first classification approach uses Gaussian-Mixture-Models (GMM) to describe the distribution of the robot's sensor data for typical situations such as stable walking or falling down. With the GMM it is possible to state the probability of the robot being in one of the known situations. The concept of the second algorithm is based on Hidden-Markov-Models (HMM). The objective is to detect and classify unstable situations by means of their typical sequences in the robot's sensor data. When appropriate reflex motions are linked to the critical situations, the robot can prevent most falls or is at least able to execute a controlled falling motion. The proposed algorithms are verified by simulations and experiments with our bipedal robot BARt-UH. © SAGE Publications 2009 Los Angeles, London.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Document Type: article
Publishing status: publishedVersion
Issue Date: 2009
Appears in Collections:Fakultät für Elektrotechnik und Informatik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 71 84.52%
2 image of flag of United States United States 5 5.95%
3 image of flag of Japan Japan 3 3.57%
4 image of flag of Italy Italy 2 2.38%
5 image of flag of Estonia Estonia 1 1.19%
6 image of flag of China China 1 1.19%
7 image of flag of Australia Australia 1 1.19%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse