Geodetic methods to determine the relativistic redshift at the level of 10-18 in the context of international timescales: a review and practical results

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Denker, H.; Timmen, L.; Voigt, C.; Weyers, S.; Peik, E. et al.: Geodetic methods to determine the relativistic redshift at the level of 10-18 in the context of international timescales: a review and practical results. In: Journal of Geodesy 92 (2017), S. 487–516. DOI: https://doi.org/10.1007/s00190-017-1075-1

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/2652

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 330




Kleine Vorschau
Zusammenfassung: 
The frequency stability and uncertainty of the latest generation of optical atomic clocks is now approaching the one part in 1018 level. Comparisons between earthbound clocks at rest must account for the relativistic redshift of the clock frequencies, which is proportional to the corresponding gravity (gravitational plus centrifugal) potential difference. For contributions to international timescales, the relativistic redshift correction must be computed with respect to a conventional zero potential value in order to be consistent with the definition of Terrestrial Time. To benefit fully from the uncertainty of the optical clocks, the gravity potential must be determined with an accuracy of about 0.1m2s−2, equivalent to about 0.01 m in height. This contribution focuses on the static part of the gravity field, assuming that temporal variations are accounted for separately by appropriate reductions. Two geodetic approaches are investigated for the derivation of gravity potential values: geometric levelling and the Global Navigation Satellite Systems (GNSS)/geoid approach. Geometric levelling gives potential differences with millimetre uncertainty over shorter distances (several kilometres), but is susceptible to systematic errors at the decimetre level over large distances. The GNSS/geoid approach gives absolute gravity potential values, but with an uncertainty corresponding to about 2 cm in height. For large distances, the GNSS/geoid approach should therefore be better than geometric levelling. This is demonstrated by the results from practical investigations related to three clock sites in Germany and one in France. The estimated uncertainty for the relativistic redshift correction at each site is about 2×10−18.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2017
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 203 61,52%
2 image of flag of United States United States 41 12,42%
3 image of flag of China China 31 9,39%
4 image of flag of Netherlands Netherlands 10 3,03%
5 image of flag of Italy Italy 10 3,03%
6 image of flag of France France 4 1,21%
7 image of flag of No geo information available No geo information available 3 0,91%
8 image of flag of Japan Japan 3 0,91%
9 image of flag of India India 3 0,91%
10 image of flag of Indonesia Indonesia 3 0,91%
    andere 19 5,76%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.