Numerical and experimental investigations of the anisotropic transformation strains during martensitic transformation in a low alloy Cr-Mo steel 42CrMo4

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Chugreev, A.: Numerical and experimental investigations of the anisotropic transformation strains during martensitic transformation in a low alloy Cr-Mo steel 42CrMo4. In: Procedia Engineering 207 (2017), S. 1815-1820. DOI: https://doi.org/10.1016/j.proeng.2017.10.944

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/2613

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 233




Kleine Vorschau
Zusammenfassung: 
Hot forming as a coupled thermo-mechanical process comprises of numerous material phenomena with a corresponding impact on the material behavior during and after the forming process. Within the subsequent heat treatment, possible rapid cooling of the hot formed parts leads to the diffusionless decomposition of austenite into martensite. In this context, in addition to the elastic, plastic and linear thermal strain components, complex isotropic as well as anisotropic transformation strains can occur. Irreversible anisotropic transformation strains account for the plastic deformation at the phase boundary between the emerging and the parent phase and are related to the transformation induced plasticity (TRIP or TP) phenomena. Moreover, TRIP strains can be reduced or amplified by varying the current stress state. These phenomena significantly contribute to the final residual stress state and may be responsible for the cost-intensive component defects arising due to thermal shrinkage. This study aims at developing an FE-based material model in order to describe and quantitatively visualize stress dependence of the transformation induced anisotropic strains for a typical forging steel 42CrMo4. The developed material model as well as the aspects of its implementation in a commercial FE-system (Simufact.forming) is presented. Consequently, the discussed material model is tested by comparison of experimental and numerical results with respect to resulting dilatation under various stress states.
Lizenzbestimmungen: CC BY-NC-ND 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2017
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 156 66,95%
2 image of flag of United States United States 27 11,59%
3 image of flag of China China 22 9,44%
4 image of flag of No geo information available No geo information available 6 2,58%
5 image of flag of France France 6 2,58%
6 image of flag of Russian Federation Russian Federation 2 0,86%
7 image of flag of United Kingdom United Kingdom 2 0,86%
8 image of flag of Canada Canada 2 0,86%
9 image of flag of Taiwan Taiwan 1 0,43%
10 image of flag of Turkey Turkey 1 0,43%
    andere 8 3,43%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.