Wieler solenoids, Cuntz–Pimsner algebras and K-theory

Download statistics - Document (COUNTER):

Deeley, R.J.; Goffeng, M.; Mesland, B.; Whittaker, M.F.: Wieler solenoids, Cuntz–Pimsner algebras and K-theory. In: Ergodic Theory and Dynamical Systems 38 (2018), S. 2942-2988. DOI: https://doi.org/10.1017/etds.2017.10

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/2367

Selected time period:

year: 
month: 

Sum total of downloads: 13




Abstract: 
We study irreducible Smale spaces with totally disconnected stable sets and their associated K-theoretic invariants. Such Smale spaces arise as Wieler solenoids, and we restrict to those arising from open surjections. The paper follows three converging tracks: one dynamical, one operator algebraic and one K-theoretic. Using Wieler’s theorem, we characterize the unstable set of a finite set of periodic points as a locally trivial fibre bundle with discrete fibres over a compact space. This characterization gives us the tools to analyse an explicit groupoid Morita equivalence between the groupoids of Deaconu–Renault and Putnam–Spielberg, extending results of Thomsen. The Deaconu–Renault groupoid and the explicit Morita equivalence lead to a Cuntz–Pimsner model for the stable Ruelle algebra. The K-theoretic invariants of Cuntz–Pimsner algebras are then studied using the Cuntz–Pimsner extension, for which we construct an unbounded representative. To elucidate the power of these constructions, we characterize the Kubo–Martin–Schwinger (KMS) weights on the stable Ruelle algebra of a Wieler solenoid. We conclude with several examples of Wieler solenoids, their associated algebras and spectral triples.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Document Type: article
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 13 100.00%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse