Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikiric)

Download statistics - Document (COUNTER):

Casalaina-Martin, S.; Grushevsky, S.; Hulek, K.; Laza, R.; Dutour Sikiric, M.: Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties (with an appendix by Mathieu Dutour Sikiric). In: Journal of the European Mathematical Society 19 (2017), Nr. 3, S. 659-723. DOI: https://doi.org/10.4171/JEMS/678

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/2312

Selected time period:

year: 
month: 

Sum total of downloads: 48




Thumbnail
Abstract: 
The main purpose of this paper is to present a conceptual approach to understanding the extension of the Prym map from the space of admissible double covers of stable curves to different toroidal compactifications of the moduli space of principally polarized abelian varieties. By separating the combinatorial problems from the geometric aspects we can reduce this to the computation of certain monodromy cones. In this way we not only shed new light on the extension results of Alexeev, Birkenhake, Hulek, and Vologodsky for the second Voronoi toroidal compactification, but we also apply this to other toroidal compactifications, in particular the perfect cone compactification, for which we obtain a combinatorial characterization of the indeterminacy locus, as well as a geometric description up to codimension six, and an explicit toroidal resolution of the Prym map up to codimension four. © 2017 European Mathematical Society.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Document Type: article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 45 93.75%
2 image of flag of United States United States 2 4.17%
3 image of flag of Japan Japan 1 2.08%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse