Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

Download statistics - Document (COUNTER):

Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T. et al.: Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. In: Physical Review D - Particles, Fields, Gravitation and Cosmology 91 (2015), Nr. 2, No. 22003. DOI: https://doi.org/10.1103/PhysRevD.91.022003

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/2125

Selected time period:

year: 
month: 

Sum total of downloads: 59




Thumbnail
Abstract: 
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO’s fifth science run. At low frequencies, 40–460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460–1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω(f)<7.7×10−4(f/900  Hz)3, which improves on the previous upper limit by a factor of ∼180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors. © 2015 The American Physical Society
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: article
Publishing status: publishedVersion
Issue Date: 2015
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 52 88.14%
2 image of flag of United States United States 1 1.69%
3 image of flag of Russian Federation Russian Federation 1 1.69%
4 image of flag of Korea, Republic of Korea, Republic of 1 1.69%
5 image of flag of France France 1 1.69%
6 image of flag of Denmark Denmark 1 1.69%
7 image of flag of Costa Rica Costa Rica 1 1.69%
8 image of flag of China China 1 1.69%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse