Precise fabrication of ultra violet dielectric dispersion compensating mirrors

Download statistics - Document (COUNTER):

Willemsen, T.; Schlichting, S.; Kellermann, T.; Jupé, M.; Ehlers, H. et al.: Precise fabrication of ultra violet dielectric dispersion compensating mirrors. In: Proceedings of SPIE - The International Society for Optical Engineering 9627 (2015), 96271U. DOI: https://doi.org/10.1117/12.2191051

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/1780

Selected time period:

year: 
month: 

Sum total of downloads: 248




Thumbnail
Abstract: 
The present contribution is concentrated on an improved method to manufacture dielectric dispersion compensating mirrors in the ultra violet (UV) range by applying a novel online phase monitoring device. This newly developed measurement tool monitors the group delay (GD) and group delay dispersion (GDD) of the electromagnetic field in situ during the deposition of the layer system. Broad band monitoring of the phase enhances the accuracy in the near infrared spectral range (NIR), significantly. In this study, the correlation of the GDD in the NIR and in the UV spectral range is investigated. A design synthesis is introduced to achieve optimum reflection and GDD target values in the UV and NIR. This requires a similar behavior of both bands according to deposition errors, to guarantee switching off the UV GDD target band proper, while monitoring the GDD in the NIR spectral range. The synthesis results in a design, characterized by a GDD of -100fs2±20fs2 between 330nm and 360nm in the UV and by -450fs2±10fs2 within 820nm to 870nm in the NIR. The fabricated sample, applying an ion beam sputtering process, consists of a 9μm layer stack of Hafnium oxide and Silicon dioxide. The first layers of the stack are switched and controlled by a conventional in situ spectrometric broad band monitoring in conjunction with a forward re-optimization algorithm, which also manipulates the layers remaining for deposition at each switching event. To accomplish the demanded GDD-spectra, the last layers are controlled by the novel in situ GDD monitor. © 2015 SPIE.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Document Type: BookPart
Publishing status: publishedVersion
Issue Date: 2015
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 167 67.34%
2 image of flag of United States United States 37 14.92%
3 image of flag of China China 10 4.03%
4 image of flag of No geo information available No geo information available 3 1.21%
5 image of flag of Lithuania Lithuania 3 1.21%
6 image of flag of France France 3 1.21%
7 image of flag of Czech Republic Czech Republic 3 1.21%
8 image of flag of Russian Federation Russian Federation 2 0.81%
9 image of flag of India India 2 0.81%
10 image of flag of United Kingdom United Kingdom 2 0.81%
    other countries 16 6.45%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse