Reviewing and analyzing shrinkage of peat and other organic soils in relation to selected soil properties

Download statistics - Document (COUNTER):

Seidel, R.; Dettmann, U.; Tiemeyer, B.: Reviewing and analyzing shrinkage of peat and other organic soils in relation to selected soil properties. In: Vadose Zone Journal 22 (2023), Nr. 5, e20264. DOI: https://doi.org/10.1002/vzj2.20264

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/17309

Selected time period:

year: 
month: 

Sum total of downloads: 6




Thumbnail
Abstract: 
Peat and other organic soils (e.g., organo-mineral soils) show distinctive volume changes through desiccation and wetting. Important processes behind volume changes are shrinkage and swelling. There is a long history of studies on shrinkage which were conducted under different schemes for soil descriptions, nomenclatures and parameters, measurement approaches, and terminologies. To date, these studies have not been harmonized in order to compare or predict shrinkage from different soil properties, for example, bulk density or substrate composition. This, however, is necessary to prevent biases in the determination of volume-based soil properties or for the interpretation of elevation measurements in peatlands, in order to predict carbon dioxide emissions or uptake caused by microbial decomposition or peat formation. This study gives a comprehensive overview of shrinkage studies carried out in the last 100 years. Terminology and approaches are systematically classified. In part I, the concepts for shrinkage characteristics, measurement methods, and model approaches are summarized. Part II is a meta-analysis of shrinkage studies on peat and other organic soils amended by own measurement data obtained by a three-dimensional structured light scanner. The results show that maximum shrinkage has a wide range from 11% to 93% and is strongly affected by common soil properties (botanical composition, degree of decomposition, soil organic carbon, and bulk density). Showing a stronger correlation, bulk density was a better predictor than soil organic carbon, but maximum shrinkage showed a large spread over all types of peat and other organic soils and ranges of bulk density and soil organic carbon.
License of this version: CC BY-NC-ND 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 3 50.00%
2 image of flag of United States United States 1 16.67%
3 image of flag of Russian Federation Russian Federation 1 16.67%
4 image of flag of France France 1 16.67%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse