Geometric accuracy analysis of worlddem in relation to AW3D30, srtm and aster GDEM2

Download statistics - Document (COUNTER):

Bayburt, S.; Kurtak, A.B.; Büyüksalih, G.; Jacobsen, K.: Geometric accuracy analysis of worlddem in relation to AW3D30, srtm and aster GDEM2. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42 (2017), Nr. 1W1, S. 211-217. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 292

In a project area close to Istanbul the quality of WorldDEM, AW3D30, SRTM DSM and ASTER GDEM2 have been analyzed in relation to a reference aerial LiDAR DEM and to each other. The random and the systematic height errors have been separated. The absolute offset for all height models in X, Y and Z is within the expectation. The shifts have been respected in advance for a satisfying estimation of the random error component. All height models are influenced by some tilts, different in size. In addition systematic deformations can be seen not influencing the standard deviation too much. The delivery of WorldDEM includes information about the height error map which is based on the interferometric phase errors, and the number and location of coverage's from different orbits. A dependency of the height accuracy from the height error map information and the number of coverage's can be seen, but it is smaller as expected. WorldDEM is more accurate as the other investigated height models and with 10m point spacing it includes more morphologic details, visible at contour lines. The morphologic details are close to the details based on the LiDAR digital surface model (DSM). As usual a dependency of the accuracy from the terrain slope can be seen. In forest areas the canopy definition of InSAR X- and C-band height models as well as for the height models based on optical satellite images is not the same as the height definition by LiDAR. In addition the interferometric phase uncertainty over forest areas is larger. Both effects lead to lower height accuracy in forest areas, also visible in the height error map.
License of this version: CC BY 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 82 28.08%
2 image of flag of China China 40 13.70%
3 image of flag of United States United States 38 13.01%
4 image of flag of Turkey Turkey 18 6.16%
5 image of flag of Brazil Brazil 9 3.08%
6 image of flag of Japan Japan 7 2.40%
7 image of flag of Egypt Egypt 7 2.40%
8 image of flag of Netherlands Netherlands 6 2.05%
9 image of flag of New Zealand New Zealand 5 1.71%
10 image of flag of Italy Italy 5 1.71%
    other countries 75 25.68%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository