Forming and Joining of Carbon-Fiber-Reinforced Thermoplastics and Sheet Metal in One Step

Download statistics - Document (COUNTER):

Behrens, Bernd-Arno.; Hübner, Sven; Grbic, Nenad; Micke-Camuz, Moritz; Wehrhane, Tim et al.: Forming and Joining of Carbon-Fiber-Reinforced Thermoplastics and Sheet Metal in One Step. In: Procedia Engineering 183 (2017), S. 227-232. DOI: https://doi.org/10.1016/j.proeng.2017.04.026

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/1715

Selected time period:

year: 
month: 

Sum total of downloads: 625




Thumbnail
Abstract: 
The processing and component properties of metals have led to their worldwide success in mechanical engineering. Their advantages are high ductility, efficient production methods, good joining ability and nearly isotropic mechanical properties. Fiber-reinforced plastics (FRP) are known for an excellent lightweight design potential, due to low density as well as high and anisotropic tensile stiffness. By using thermoplastics instead of thermoset matrices, processing times and therefore component costs have already been reduced significantly and thus have become affordable in large-scale application. If the advantages of both, metal and FRP, are intelligently combined, a part with tailored properties is created. However, suitable forming processes, which take the different forming effects of both materials into account, have to be developed yet. The scope of this research was to enable the combined forming, joining and impregnation of pre-impregnated FRP-sheets and sheet metal to steel-CFRP-steel-sandwich-parts in one process step. As forming and joining must be executed at temperatures above the melting point of the thermoplastic while the part removal must take place beneath this temperature, a heating concept for drawing tools was developed to enable short production cycles. In order to ensure an economic industrial production a fast heating and cooling of the tool is essential. Afterwards optimal impregnation and joining process parameters for short cycle times were determined with planar samplings. The influence of the process parameters on part quality was investigated microscopically. Based on this research, a forming tool was constructed and hat profiles of steel-FRP-steel sandwiches were drawn successfully. Subsequently, the impregnation quality was investigated based on the process parameter tool temperature. Furthermore, the geometrical deviation of formed hat profiles was investigated. © 2017 The Authors.
License of this version: CC BY-NC-ND 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 303 48.48%
2 image of flag of France France 86 13.76%
3 image of flag of Canada Canada 54 8.64%
4 image of flag of United States United States 52 8.32%
5 image of flag of India India 19 3.04%
6 image of flag of China China 17 2.72%
7 image of flag of Korea, Republic of Korea, Republic of 15 2.40%
8 image of flag of Taiwan Taiwan 8 1.28%
9 image of flag of Philippines Philippines 5 0.80%
10 image of flag of Hong Kong Hong Kong 5 0.80%
    other countries 61 9.76%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse