Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign

Download statistics - Document (COUNTER):

Heinze, R.; Moseley, C.; Böske, L.N.; Muppa, S.K.; Maurer, V. et al.: Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign. In: Atmospheric Chemistry and Physics 17 (2017), Nr. 11, S. 7083-7109. DOI: https://doi.org/10.5194/acp-17-7083-2017

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/1711

Selected time period:

year: 
month: 

Sum total of downloads: 191




Thumbnail
Abstract: 
Large-eddy simulations (LESs) of a multi-week period during the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE) conducted in Germany are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two LES models are used in a semi-idealized setup through forcing with mesoscale model output to account for the synoptic-scale conditions. Evaluation is performed based on the HOPE observations. The mean boundary layer characteristics like the boundary layer depth are in a principal agreement with observations. Simulating shallow-cumulus layers in agreement with the measurements poses a challenge for both LES models. Variance profiles agree satisfactorily with lidar measurements. The results depend on how the forcing data stemming from mesoscale model output are constructed. The mean boundary layer characteristics become less sensitive if the averaging domain for the forcing is large enough to filter out mesoscale fluctuations. © Author(s) 2017.
License of this version: CC BY 3.0 Unported
Document Type: article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 165 86.39%
2 image of flag of United States United States 8 4.19%
3 image of flag of China China 8 4.19%
4 image of flag of France France 2 1.05%
5 image of flag of No geo information available No geo information available 1 0.52%
6 image of flag of Russian Federation Russian Federation 1 0.52%
7 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 1 0.52%
8 image of flag of Hungary Hungary 1 0.52%
9 image of flag of Hong Kong Hong Kong 1 0.52%
10 image of flag of Czech Republic Czech Republic 1 0.52%
    other countries 2 1.05%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse