Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Wittchen, A.; et al. (The LPF Collaboration): Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder. In: Journal of Physics: Conference Series 840 (2017), Nr. 1, 12003. DOI: https://doi.org/10.1088/1742-6596/840/1/012003

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1702

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 334




Kleine Vorschau
Zusammenfassung: 
LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.
Lizenzbestimmungen: CC BY 3.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2017
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 202 60,48%
2 image of flag of China China 65 19,46%
3 image of flag of United States United States 33 9,88%
4 image of flag of France France 5 1,50%
5 image of flag of Japan Japan 3 0,90%
6 image of flag of Chile Chile 3 0,90%
7 image of flag of Singapore Singapore 2 0,60%
8 image of flag of India India 2 0,60%
9 image of flag of Hong Kong Hong Kong 2 0,60%
10 image of flag of Canada Canada 2 0,60%
    andere 15 4,49%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.