Maas, A.; Alrajhi, M.; Alobeid, A.; Heipke, C.: Automatic classification of high resolution satellite imagery - A case study for urban areas in the Kingdom of Saudi Arabia. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42 (2017), Nr. 1W1, S. 11-16. DOI: https://doi.org/10.5194/isprs-archives-XLII-1-W1-11-2017
Abstract: | |
Updating topographic geospatial databases is often performed based on current remotely sensed images. To automatically extract the object information (labels) from the images, supervised classifiers are being employed. Decisions to be taken in this process concern the definition of the classes which should be recognised, the features to describe each class and the training data necessary in the learning part of classification. With a view to large scale topographic databases for fast developing urban areas in the Kingdom of Saudi Arabia we conducted a case study, which investigated the following two questions: (a) which set of features is best suitable for the classification?; (b) what is the added value of height information, e.g. derived from stereo imagery? Using stereoscopic GeoEye and Ikonos satellite data we investigate these two questions based on our research on label tolerant classification using logistic regression and partly incorrect training data. We show that in between five and ten features can be recommended to obtain a stable solution, that height information consistently yields an improved overall classification accuracy of about 5%, and that label noise can be successfully modelled and thus only marginally influences the classification results. | |
License of this version: | CC BY 3.0 Unported |
Document Type: | Article |
Publishing status: | publishedVersion |
Issue Date: | 2017 |
Appears in Collections: | Fakultät für Bauingenieurwesen und Geodäsie |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
Germany | 173 | 72.08% |
2 | ![]() |
United States | 21 | 8.75% |
3 | ![]() |
Saudi Arabia | 7 | 2.92% |
4 | ![]() |
China | 5 | 2.08% |
5 | ![]() |
No geo information available | 4 | 1.67% |
6 | ![]() |
Iran, Islamic Republic of | 3 | 1.25% |
7 | ![]() |
Canada | 3 | 1.25% |
8 | ![]() |
Slovakia | 2 | 0.83% |
9 | ![]() |
Nepal | 2 | 0.83% |
10 | ![]() |
Austria | 1 | 0.42% |
other countries | 19 | 7.92% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.