Complementary effects of sorption and biochemical processing of dissolved organic matter for emerging structure formation controlled by soil texture

Download statistics - Document (COUNTER):

Bucka, F.B.; Felde, V.J.M.N.L.; Peth, S.; Kögel-Knabner, I.: Complementary effects of sorption and biochemical processing of dissolved organic matter for emerging structure formation controlled by soil texture. In: Journal of Plant Nutrition and Soil Science 187 (2024), Nr. 1, S. 51-62. DOI: https://doi.org/10.1002/jpln.202200391

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/17049

Selected time period:

year: 
month: 

Sum total of downloads: 11




Thumbnail
Abstract: 
Background: Percolating dissolved organic matter (DOM) from the topsoil is considered the main source of subsoil organic carbon (OC) in temperate soils, but knowledge about its influence on OC storage and structure-forming processes is limited. Aims: We conducted a 30-day incubation experiment with artificial soils to study the effects of percolating DOM and soil texture on OC turnover and initial structure formation. Methods: Artificial soils with contrasting texture, but identical mineral composition, were used to mimic subsoil conditions, where mineral surfaces free of OM come into contact with percolating DOM. After the incubation, we assessed the solution exchange, OM covers on minerals, microbial community and OC turnover, and aggregate formation and stability. Results: A higher sand content caused a lower porosity, accompanied by a lower moisture content. In contrast, the OC retention (21% of the OC input), microbial activity, and community size were unaffected by soil texture. The OM covered 10% of the mineral surfaces within an otherwise OC-free mineral matrix. The formation of large, water-stable aggregates occurred in all soils, but was pronounced in the clay-rich soils (58% mass contribution), which also supported a higher mechanical stability of the aggregates. Conclusions: The initial retention and microbial mineralization of DOM are decoupled from pore sizes and soil solution exchange but are driven by the mineral composition and OC input. The biochemical processing of the percolating DOM can induce large aggregates. Here, the presence of fine mineral particles enhances the formation and mechanical stability of the aggregates, irrespective of their surface charge or sorptive properties.
License of this version: CC BY-NC 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2024
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 7 63.64%
2 image of flag of United States United States 3 27.27%
3 image of flag of France France 1 9.09%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse