Porosity Engineering of Dried Smart Poly(N-isopropylacrylamide) Hydrogels for Gas Sensing

Download statistics - Document (COUNTER):

Wang, S.; Jiao, C.; Gerlach, G.; Körner, J.: Porosity Engineering of Dried Smart Poly(N-isopropylacrylamide) Hydrogels for Gas Sensing. In: Biomacromolecules (2023), online first. DOI: https://doi.org/10.1021/acs.biomac.3c00738

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/16954

Selected time period:

year: 
month: 

Sum total of downloads: 3




Thumbnail
Abstract: 
A recent study unveiled the potential of acrylamide-based stimulus-responsive hydrogels for volatile organic compound detection in gaseous environments. However, for gas sensing, a large surface area, that is, a highly porous material, offering many adsorption sites is crucial. The large humidity variation in the gaseous environment constitutes a significant challenge for preserving an initially porous structure, as the pores tend to be unstable and irreversibly collapse. Therefore, the present investigation focuses on enhancing the porosity of smart PNiPAAm hydrogels under the conditions of a gaseous environment and the preservation of the structural integrity for long-term use. We have studied the influence of polyethylene glycol (PEG) as a porogen and the application of different drying methods and posttreatment. The investigations lead to the conclusion that only the combination of PEG addition, freeze-drying, and subsequent conditioning in high relative humidity enables a long-term stable formation of a porous surface and inner structure of the material. The significantly enhanced swelling response in a gaseous environment and in the test gas acetone is confirmed by gravimetric experiments of bulk samples and continuous measurements of thin films on piezoresistive pressure sensor chips. These measurements are furthermore complemented by an in-depth analysis of the morphology and microstructure. While the study was conducted for PNiPAAm, the insights and developed processes are general in nature and can be applied for porosity engineering of other smart hydrogel materials for VOC detection in gaseous environments.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Fakultät für Elektrotechnik und Informatik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 2 66.67%
2 image of flag of United States United States 1 33.33%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse