Multiresonant all-dielectric metasurfaces based on high-order multipole coupling in the visible

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Allayarov, I.; Evlyukhin, A.B.; Lesina, A.C.: Multiresonant all-dielectric metasurfaces based on high-order multipole coupling in the visible. In: Optics Express (OpEx) 32 (2024), Nr. 4, 5641. DOI: https://doi.org/10.1364/oe.511172

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/16747

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 6




Kleine Vorschau
Zusammenfassung: 
In many cases, optical metasurfaces are studied in the single-resonant regime. However, a multiresonant behavior can enable multiband devices with reduced footprint, and is desired for applications such as display pixels, multispectral imaging and sensing. Multiresonances are typically achieved by engineering the array lattice (e.g., to obtain several surface lattice resonances), or by adopting a unit cell hosting one (or more than one) nanostructure with some optimized geometry to support multiple resonances. Here, we present a study on how to achieve multiresonant metasurfaces in the visible spectral range by exploiting high-order multipoles in dielectric (e.g., diamond or titanium dioxide) nanostructures. We show that in a simple metasurface (for a fixed particle and lattice geometry) one can achieve triple resonance occurring nearly at RGB (red, green, and blue) wavelengths. Based on analytical and numerical analysis, we demonstrate that the physical mechanism enabling the multiresonance behavior is the lattice induced coupling (energy exchange) between high-order Mie-type multipoles moments of the metasurface’s particles. We discuss the influence on the resonances of the metasurface’s finite size, surrounding material, polarization, and lattice shape, and suggest control strategies to enable the optical tunability of these resonances.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2024
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau
Forschungszentren

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 3 50,00%
2 image of flag of United States United States 1 16,67%
3 image of flag of Indonesia Indonesia 1 16,67%
4 image of flag of China China 1 16,67%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.