Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations

Download statistics - Document (COUNTER):

Unterstrasser, S.; Hoffmann, F.; Lerch, M.: Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations. In: Geoscientific Model Development 10 (2017), Nr. 4, S. 1521-1548. DOI: https://doi.org/10.5194/gmd-10-1521-2017

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/1649

Selected time period:

year: 
month: 

Sum total of downloads: 153




Thumbnail
Abstract: 
Recently, several Lagrangian microphysical models have been developed which use a large number of (computational) particles to represent a cloud. In particular, the collision process leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently in various models. Three existing implementations are reviewed and extended, and their performance is evaluated by a comparison with well-established analytical and bin model solutions. In this first step of rigorous evaluation, box model simulations, with collection/aggregation being the only process considered, have been performed for the three well-known kernels of Golovin, Long and Hall. <br><br> Besides numerical parameters, like the time step and the number of simulation particles (SIPs) used, the details of how the initial SIP ensemble is created from a prescribed analytically defined size distribution is crucial for the performance of the algorithms. Using a constant weight technique, as done in previous studies, greatly underestimates the quality of the algorithms. Using better initialisation techniques considerably reduces the number of required SIPs to obtain realistic results. From the box model results, recommendations for the collection/aggregation implementation in higher dimensional model setups are derived. Suitable algorithms are equally relevant to treating the warm rain process and aggregation in cirrus.
License of this version: CC BY 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 114 74.51%
2 image of flag of United States United States 22 14.38%
3 image of flag of China China 8 5.23%
4 image of flag of Hungary Hungary 2 1.31%
5 image of flag of Taiwan Taiwan 1 0.65%
6 image of flag of India India 1 0.65%
7 image of flag of Indonesia Indonesia 1 0.65%
8 image of flag of France France 1 0.65%
9 image of flag of Algeria Algeria 1 0.65%
10 image of flag of Czech Republic Czech Republic 1 0.65%
    other countries 1 0.65%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse